EM
Emad Moeendarbary
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(71% Open Access)
Cited by:
2,099
h-index:
30
/
i10-index:
45
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts

Fernando Calvo et al.May 24, 2013
To learn more about cancer-associated fibroblasts (CAFs), we have isolated fibroblasts from different stages of breast cancer progression and analysed their function and gene expression. These analyses reveal that activation of the YAP transcription factor is a signature feature of CAFs. YAP function is required for CAFs to promote matrix stiffening, cancer cell invasion and angiogenesis. Remodelling of the ECM and promotion of cancer cell invasion requires the actomyosin cytoskeleton. YAP regulates the expression of several cytoskeletal regulators, including ANLN and DIAPH3, and controls the protein levels of MYL9 (also known as MLC2). Matrix stiffening further enhances YAP activation, thus establishing a feed-forward self-reinforcing loop that helps to maintain the CAF phenotype. Actomyosin contractility and Src function are required for YAP activation by stiff matrices. Further, transient ROCK inhibition is able to disrupt the feed-forward loop, leading to a long-lasting reversion of the CAF phenotype. Sahai and colleagues report that YAP is required for the establishment and function of cancer-associated fibroblasts. They propose that matrix stiffening promotes Src-mediated activation of YAP in fibroblasts, which is necessary for the cancer-associated fibroblast phenotype and further promotes matrix stiffening in a positive feedback loop.
0
Citation1,187
0
Save
0

The cytoplasm of living cells behaves as a poroelastic material

Emad Moeendarbary et al.Jan 4, 2013
The cytoplasm is the largest part of the cell by volume and hence its rheology sets the rate at which cellular shape changes can occur. Recent experimental evidence suggests that cytoplasmic rheology can be described by a poroelastic model, in which the cytoplasm is treated as a biphasic material consisting of a porous elastic solid meshwork (cytoskeleton, organelles, macromolecules) bathed in an interstitial fluid (cytosol). In this picture, the rate of cellular deformation is limited by the rate at which intracellular water can redistribute within the cytoplasm. However, direct supporting evidence for the model is lacking. Here we directly validate the poroelastic model to explain cellular rheology at short timescales using microindentation tests in conjunction with mechanical, chemical and genetic treatments. Our results show that water redistribution through the solid phase of the cytoplasm (cytoskeleton and macromolecular crowders) plays a fundamental role in setting cellular rheology at short timescales. It has been suggested that the cytoplasm of living cells can be described as a porous elastic meshwork bathed in an interstitial fluid. Microindentation tests now show that intracellular water redistribution plays a fundamental role in cellular rheology and that at physiologically relevant timescales cellular responses to mechanical stresses are consistent with such a poroelastic model.
1

Modeling the three-way feedback between cellular contractility, actin polymerization, and adhesion turnover resolves the contradictory effects of RhoA and Rac1 on endothelial junction dynamics

Eóin McEvoy et al.Mar 16, 2021
Abstract The formation and recovery of gaps in the vascular endothelium governs a wide range of physiological and pathological phenomena, from angiogenesis to atherosclerosis and tumor cell extravasation. However, the interplay between the mechanical and signaling processes that drive dynamic behavior in vascular endothelial cells is not well understood. In this study, we propose a chemo-mechanical model to investigate the maintenance of endothelial junctions as dependent on the crosstalk between actomyosin contractility, VE-cadherin bond turnover, and actin polymerization, which mediate the forces exerted on the cell-cell interface. Our theoretical model reveals that active cell tension can stabilize cadherin bonds within an adhesion, but excessive RhoA signaling can drive bond dissociation and junction failure. While Rac1-mediated actin polymerization aids gap closure, high levels of Rac1 may also facilitate junction weakening. Combining the modeling framework with novel experiments, we identify how dynamic rupture and heal cycles emerge and, further, describe why gaps tend to localize at multi-cell contacts. Beyond, our analysis also indicates that a critical balance between RhoA and Rac1 expression is required to maintain junction stability and limit endothelial dysfunction. The model predicts how pharmacological modulation of actin polymerization and cell contractility impacts junction stability, with predictions subsequently validated experimentally. Our proposed framework can help guide the development of therapeutics that target the Rho family of GTPases and downstream active mechanical processes.
0

The cytoplasm of living cells can sustain transient and steady intracellular pressure gradients

Majid Malboubi et al.Apr 25, 2024
Understanding the physical basis of cellular shape change in response to both internal and external mechanical stresses requires understanding cytoplasmic rheology. At subsecond time-scales and micron length-scales, cells behave as fluid-filled sponges in which shape changes necessitate intracellular fluid redistribution. However, whether these cytoplasmic poroelastic properties play an important role in cellular mechanical response over length-scales and time-scales relevant to cell physiology remains unclear. Here, we investigated whether and how a localised deformation of the cell surface gives rise to transient intracellular flows spanning several microns and lasting seconds. Next, we show that pressure gradients induced in the cytoplasm can be sustained over several minutes. We found that stable pressure gradients can arise from the combination of cytoplasmic poroelasticity and water flows across the membrane. Overall our data indicate that intracellular cytosolic flows and pressure gradients may play a much greater role than currently appreciated, acting over time- and length-scales relevant to mechanotransduction and cell migration, signifying that poroelastic properties need to be accounted for in models and states of the cell.