ABSTRACT Phage (endo)lysins are thought to be a viable alternative to usual antibiotic chemotherapy to fight resistant bacterial infections. However, a landscape view of lysins’ structure and properties regarding their function, with an applied focus, is somewhat lacking. Current literature suggests that specific features typical of lysins from phages infecting Gram-negative bacteria (G−) (higher net charge, amphipathic helices) are responsible for an improved interaction with G− envelope. Such antimicrobial peptide (AMP)-like elements are also of interest for antimicrobial molecules design. Thus, this study aims to provide an updated view on the primary structural landscape of phage lysins to clarify the evolutionary importance of several sequence-predicted properties, particularly for the interaction with the G− surface. A database of 2,182 lysin sequences was compiled, containing relevant information such as domain architectures, data on the phages’ host bacteria and sequence-predicted physicochemical properties. Based on such classifiers, an investigation on the differential appearance of certain features was conducted. Such analyses revealed different lysin architectural variants that are preferably found in phages infecting certain bacterial hosts. Particularly, some physicochemical properties (higher net charge, hydrophobicity, hydrophobic moment and aliphatic index) were associated to G− phage lysins, appearing specifically at their C-terminal end. Evidences on the remarkable genetic specialization of lysins regarding the features of the bacterial hosts have been provided, specifically supporting the nowadays common hypothesis that lysins from G− usually contain AMP-like regions. IMPORTANCE Phage-encoded lytic enzymes, also called lysins, are one of the most promising alternatives to common antibiotics. The lysins potential as novel antimicrobials to tackle antibiotic-resistant bacteria not only arises from features such as a lower chance to provoke resistance, but also from their versatility as synthetic biology parts. Functional modules derived from lysins are currently being used for the design of novel antimicrobials with desired properties. This study provides a view of the lysins diversity landscape by examining a set of phage lysin genes. This way, we have uncovered the fundamental differences between the lysins from phages that infect bacteria with different superficial architectures, and, thus, also the reach of their specialization regarding cell wall structures. These results provide clarity and evidences to sustain some of the common hypothesis in current literature, as well as make available an updated and characterized database of lysins sequences for further developments.