LN
Laleh Najafizadeh
Author with expertise in Nanoelectronics and Transistors
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
28
(61% Open Access)
Cited by:
387
h-index:
19
/
i10-index:
50
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Application of RHBD Techniques to SEU Hardening of Third-Generation SiGe HBT Logic Circuits

R. Krithivasan et al.Dec 1, 2006
Shift registers featuring radiation-hardening-by-design (RHBD) techniques are realized in IBM 8HP SiGe BiCMOS technology. Both circuit and device-level RHBD techniques are employed to improve the overall SEU immunity of the shift registers. Circuit-level RHBD techniques include dual-interleaving and gated-feedback that achieve SEU mitigation through local latch-level redundancy and correction. In addition, register-level RHBD based on triple-module redundancy (TMR) versions of dual-interleaved and gated-feedback cell shift registers is also realized to gauge the performance improvement offered by TMR. At the device-level, RHBD C-B-E SiGe HBTs with single collector and base contacts and significantly smaller deep trench-enclosed area than standard C-B-E-B-C devices with dual collector and base contacts are used to reduce the upset sensitive area. The SEU performance of these shift registers was then tested using heavy ions and standard bit-error testing methods. The results obtained are compared to the unhardened standard shift register designed with CBEBC SiGe HBTs. The RHBD-enhanced shift registers perform significantly better than the unhardened circuit, with the TMR technique proving very effective in achieving significant SEU immunity
1

Single Event Transient Response of SiGe Voltage References and Its Impact on the Performance of Analog and Mixed-Signal Circuits

Laleh Najafizadeh et al.Dec 1, 2009
We investigate the single-event transient (SET) response of bandgap voltage references (BGRs) implemented in SiGe BiCMOS technology through heavy ion microbeam experiments. The SiGe BGR circuit is used to provide the input reference voltage to a voltage regulator. SiGe HBTs in the BGR circuit are struck with 36-MeV oxygen ions, and the subsequent transient responses are captured at the output of the regulator. Sensitive devices responsible for generating transients with large peak magnitudes (more than 5% of the dc output voltage) are identified. To determine the effectiveness of a transistor-layout-based radiation hardened by design (RHBD) technique with respect to immunity to SETs at the circuit level, the BGR circuit implemented with HBTs surrounded by an alternate reverse-biased pn junction (n-ring RHBD) is also bombarded with oxygen ions, and subsequent SETs are captured. Experimental results indicate that the number of events causing transients with peak magnitude more than 5% above the dc level have been reduced in the RHBD version; however, with the inclusion of the n-ring RHBD, new locations for the occurrence of transients (albeit with smaller peak magnitude) are created. Transients at the transistor-level are also independently captured and are presented. It is demonstrated that while the transients are short at the transistor level (ns duration), relatively long transients are obtained at the circuit level (hundreds of nanoseconds). In addition, the impact of the SET response of the BGR on the performance of an ultra-high-speed 3-bit SiGe analog-to-digital converter (ADC) is investigated through simulation. It is shown that ion-induced transients in the reference voltage could eventually lead to data corruption at the output of the ADC.
1

A Comparison of the Effects of X-Ray and Proton Irradiation on the Performance of SiGe Precision Voltage References

Laleh Najafizadeh et al.Dec 1, 2007
A comprehensive investigation of the performance dependencies of irradiated SiGe precision voltage reference circuits on (1) total ionizing dose (TID), (2) circuit topology, and (3) radiation source is presented. Two different bandgap voltage references were designed using a first-generation (50-GHz) SiGe BiCMOS technology platform, and subsequently exposed to X-rays at doses of 1080 krad(SiO 2 ) and 5400 krad(SiO 2 ). The degradation in circuit performance following X-ray irradiation depends on both the TID level and the chosen circuit topology. Measurement results show that large TID levels can significantly shift the magnitude of the output voltage. Explanations for the observed shifts are provided by utilizing detailed analyses of the two circuit topologies and considering device-to-circuit interactions. The primary factor responsible for the difference in the circuit response before and after irradiation can be attributed to the excess base leakage current in the SiGe HBT. To investigate the impact of radiation source, the circuit topology showing the worst-case degradation from the X-ray experiment was independently exposed to 63-MeV protons at the same effective TID level. A clear source dependence in the circuit response was observed, and possible origins of this behavior are identified.
Load More