JY
Joanna Young
Author with expertise in Toxoplasmosis and Neosporosis Research
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(50% Open Access)
Cited by:
5
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
20

Toxoplasma gondii ROP1 subverts murine and human innate immune restriction

Simon Butterworth et al.Mar 21, 2022
ABSTRACT Toxoplasma gondii is an intracellular parasite that can infect many different host species and is a cause of significant human morbidity worldwide. T. gondii secretes a diverse array of effector proteins into the host cell which are critical for infection; however, the vast majority of these secreted proteins are uncharacterised. Here, we carried out a pooled CRISPR knockout screen in the T. gondii Prugniaud strain in vivo to identify secreted proteins that contribute to parasite immune evasion in the host. We identify 22 putative virulence factors and demonstrate that ROP1, the first-identified rhoptry protein of T. gondii , has a previously unrecognised role in parasite resistance to interferon gamma-mediated innate immune restriction. This function is conserved in the highly virulent RH strain of T. gondii and contributes to parasite growth in both murine and human macrophages. While ROP1 affects the morphology of rhoptries, from where the protein is secreted, it does not affect rhoptry secretion. ROP1 interacts with the host cell protein C1QBP, which appears to facilitate parasite immune evasion. In summary, we identify 22 secreted proteins which contribute to parasite growth in vivo and show that ROP1 is an important and previously overlooked effector in counteracting both murine and human innate immunity.
20
Citation5
0
Save
0

A divergent kinase lacking the glycine-rich loop regulates membrane ultrastructure of the Toxoplasma parasitophorous vacuole

Tsebaot Beraki et al.Aug 22, 2018
Apicomplexan parasites replicate within a protective organelle called the parasitophorous vacuole (PV). The Toxoplasma gondii PV is filled with a network of tubulated membranes, which are thought to facilitate trafficking of effectors and nutrients. Despite being critical to parasite virulence, there is scant mechanistic understanding of the network9s functions. Here, we identify the parasite secreted kinase WNG1 as a critical regulator of tubular membrane biogenesis. WNG1 family members adopt an atypical protein kinase fold lacking the glycine rich ATP-binding loop that is required for catalysis in canonical kinases. Unexpectedly, we find that WNG1 is an active protein kinase that localizes to the PV lumen and phosphorylates PV-resident proteins, several of which are essential for the formation of a functional intravacuolar network. Moreover, we show that WNG1-dependent phosphorylation of these proteins is required for their membrane association, and thus their ability to tubulate membranes. Consequently, WNG1 knockout parasites have an aberrant PV membrane ultrastructure. Collectively, our results describe a unique family of Toxoplasma kinases and implicate phosphorylation of secreted proteins as a mechanism of regulating PV formation during parasite infection.
0

Expansion ofin vitro Toxoplasma gondiicysts using enzymatically enhanced ultrastructure expansion microscopy

Kseniia Bondarenko et al.Apr 25, 2024
Abstract Expansion microscopy (ExM) is an innovative approach to achieve super-resolution images without using super-resolution microscopes, based on the physical expansion of the sample. The advent of ExM has unlocked super-resolution imaging for a broader scientific circle, lowering the cost and entry skill requirements to the field. One of its branches, ultrastructure ExM (U-ExM), has become popular among research groups studying Apicomplexan parasites, including the acute stage of Toxoplasma gondii infection. The chronic cyst-forming stage of Toxoplasma , however, resists U-ExM expansion, impeding precise protein localisation. Here, we solve the in vitro cyst’s resistance to denaturation required for successful U-ExM of the encapsulated parasites. As the cyst’s main structural protein CST1 contains a mucin domain, we added an enzymatic digestion step using the pan-mucinase StcE prior to the expansion protocol. This allowed full expansion of the cysts in fibroblasts and primary neuronal cell culture without interference with the epitopes of the cyst-wall associated proteins. Using StcE-enhanced U-ExM, we clarified the shape and location of the GRA2 protein important for establishing a normal cyst. Expanded cysts revealed GRA2 granules spanning across the cyst wall, with a notable presence observed outside on both sides of the CST1-positive layer. Importance Toxoplasma gondii is an intracellular parasite capable of establishing long-term chronic infection in nearly all warm-blooded animals. During the chronic stage, parasites encapsulate into cysts in a wide range of tissues but particularly in neurons of the central nervous system and in skeletal muscle. Current anti-Toxoplasma drugs do not eradicate chronic parasites and leave behind a reservoir of infection. As the cyst is critical for both transmission and pathology of the disease, we need to understand more fully the biology of the cyst and its vulnerabilities. The advent of a new super-resolution approach called ultrastructure expansion microscopy allowed in-depth studies of the acute stage of Toxoplasma infection but not the cyst-forming stage, which resists protocol-specific denaturation. Here, we show that an additional step of enzymatic digestion using mucinase StcE allows full expansion of the Toxoplasma cysts, offering a new avenue for a comprehensive examination of the chronic stage of infection using an accessible super-resolution technique.
5

Paracrine rescue of MYR1-deficient Toxoplasma gondii mutants reveals limitations of pooled in vivo CRISPR screens

Francesca Torelli et al.Aug 23, 2024
Toxoplasma gondii is an intracellular parasite that subverts host cell functions via secreted virulence factors. Up to 70% of parasite-controlled changes in the host transcriptome rely on the MYR1 protein, which is required for the translocation of secreted proteins into the host cell. Mice infected with MYR1 knock-out (KO) strains survive infection, supporting a paramount function of MYR1-dependent secreted proteins in Toxoplasma virulence and proliferation. However, we have previously shown that MYR1 mutants have no growth defect in pooled in vivo CRISPR-Cas9 screens in mice, suggesting that the presence of parasites that are wild-type at the myr1 locus in pooled screens can rescue the phenotype. Here, we demonstrate that MYR1 is not required for the survival in IFN-gamma-activated murine macrophages, and that parasites lacking MYR1 are able to expand during the onset of infection. While deltaMYR1 parasites have restricted growth in single-strain murine infections, we show that the phenotype is rescued by co-infection with wild-type (WT) parasites in vivo, independent of host functional adaptive immunity or key pro-inflammatory cytokines. These data show that the major function of MYR1-dependent secreted proteins is not to protect the parasite from clearance within infected cells. Instead, MYR-dependent proteins generate a permissive niche in a paracrine manner, which rescues deltaMYR1 parasites within a pool of CRISPR mutants in mice. Our results highlight an important limitation of otherwise powerful in vivo CRISPR screens and point towards key functions for MYR1-dependent Toxoplasma-host interactions beyond the infected cell.
0

A divergent kinase lacking the glycine-rich loop regulates membrane ultrastructure of the Toxoplasma parasitophorous vacuole

Tsebaot Beraki et al.Aug 22, 2018
Apicomplexan parasites replicate within a protective organelle called the parasitophorous vacuole (PV). The Toxoplasma gondii PV is filled with a network of tubulated membranes, which are thought to facilitate trafficking of effectors and nutrients. Despite being critical to parasite virulence, there is scant mechanistic understanding of the network's functions. Here, we identify the parasite secreted kinase WNG1 as a critical regulator of tubular membrane biogenesis. WNG1 family members adopt an atypical protein kinase fold lacking the glycine rich ATP-binding loop that is required for catalysis in canonical kinases. Unexpectedly, we find that WNG1 is an active protein kinase that localizes to the PV lumen and phosphorylates PV-resident proteins, several of which are essential for the formation of a functional intravacuolar network. Moreover, we show that WNG1-dependent phosphorylation of these proteins is required for their membrane association, and thus their ability to tubulate membranes. Consequently, WNG1 knockout parasites have an aberrant PV membrane ultrastructure. Collectively, our results describe a unique family of Toxoplasma kinases and implicate phosphorylation of secreted proteins as a mechanism of regulating PV formation during parasite infection.
0

Differential protein phosphorylation affects the localisation of two secreted Toxoplasma proteins and is widespread during stage conversion

Joanna Young et al.Apr 10, 2020
The intracellular parasite Toxoplasma gondii resides within a membrane bound parasitophorous vacuole (PV) and secretes an array of proteins to establish this replicative niche. It has been shown previously that Toxoplasma both secretes kinases and that numerous proteins are phosphorylated after secretion. Here we assess the role of phosphorylation of SFP1 and the related GRA29, two secreted proteins with unknown function. We show that both proteins form stranded structures in the PV that are independent of the previously described intravacuolar network or actin. GRA29 likely acts as a seed for SFP1 strand formation, and these structures can form independently of other Toxoplasma secreted proteins. We show that an unstructured region at the C-terminus of SFP1 and GRA29 is required for the formation of strands and that mimicking phosphorylation of this domain negatively regulates strand development. When tachyzoites convert to chronic stage bradyzoites, both proteins show a dispersed localisation throughout the cyst matrix. Many secreted proteins are reported to dynamically redistribute as the cyst forms and secreted kinases are known to play a role in cyst formation. Using quantitative phosphoproteome and proteome analysis comparing tachyzoite and early bradyzoite stages, we reveal widespread differential phosphorylation of secreted proteins. These data support a model in which secreted kinases and phosphatases are important to dynamically regulate parasite secreted proteins during stage conversion.### Competing Interest Statement
0

Paracrine rescue of MYR1-deficient Toxoplasma gondii mutants reveals limitations of pooled in vivo CRISPR screens

Francesca Torelli et al.Dec 10, 2024
Toxoplasma gondii is an intracellular parasite that subverts host cell functions via secreted virulence factors. Up to 70% of parasite-controlled changes in the host transcriptome rely on the MYR1 protein, which is required for the translocation of secreted proteins into the host cell. Mice infected with MYR1 knock-out (KO) strains survive infection, supporting a paramount function of MYR1-dependent secreted proteins in Toxoplasma virulence and proliferation. However, we have previously shown that MYR1 mutants have no growth defect in pooled in vivo CRISPR-Cas9 screens in mice, suggesting that the presence of parasites that are wild-type at the myr1 locus in pooled screens can rescue the phenotype. Here, we demonstrate that MYR1 is not required for the survival in IFN-γ-activated murine macrophages, and that parasites lacking MYR1 are able to expand during the onset of infection. While ΔMYR1 parasites have restricted growth in single-strain murine infections, we show that the phenotype is rescued by co-infection with wild-type (WT) parasites in vivo , independent of host functional adaptive immunity or key pro-inflammatory cytokines. These data show that the major function of MYR1-dependent secreted proteins is not to protect the parasite from clearance within infected cells. Instead, MYR-dependent proteins generate a permissive niche in a paracrine manner, which rescues ΔMYR1 parasites within a pool of CRISPR mutants in mice. Our results highlight an important limitation of otherwise powerful in vivo CRISPR screens and point towards key functions for MYR1-dependent Toxoplasma -host interactions beyond the infected cell.