RC
Rossella Cegli
Author with expertise in Mechanisms of Intracellular Membrane Trafficking
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(71% Open Access)
Cited by:
1,963
h-index:
22
/
i10-index:
29
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop

Carmine Settembre et al.Apr 19, 2013
The lysosomal–autophagic pathway is activated by starvation and plays an important role in both cellular clearance and lipid catabolism. However, the transcriptional regulation of this pathway in response to metabolic cues is uncharacterized. Here we show that the transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is induced by starvation through an autoregulatory feedback loop and exerts a global transcriptional control on lipid catabolism via Ppargc1α and Ppar1α. Thus, during starvation a transcriptional mechanism links the autophagic pathway to cellular energy metabolism. The conservation of this mechanism in Caenorhabditis elegans suggests a fundamental role for TFEB in the evolution of the adaptive response to food deprivation. Viral delivery of TFEB to the liver prevented weight gain and metabolic syndrome in both diet-induced and genetic mouse models of obesity, suggesting a new therapeutic strategy for disorders of lipid metabolism. Ballabio and colleagues report that the transcription factor TFEB, which has a known role in autophagy, is induced by starvation and promotes transcription of PGC1α and PPARα. Intriguingly, targeted expression of TFEB in the liver blocks the development of metabolic syndrome in mouse models of obesity.
0

Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression

Fei Lan et al.Aug 1, 2007
BHC80 is a component of the LSD1 co-repressor complex that demethylates histone H3 at lysine 4. The PHD domain of BHC80 interacts with the histone H3 tail only when lysine 4 is unmethylated, and BHC80 function is coupled to that of LSD1 in gene repression. Histone methylation is crucial for regulating chromatin structure, gene transcription and the epigenetic state of the cell. LSD1 is a lysine-specific histone demethylase that represses transcription by demethylating histone H3 on lysine 4 (ref. 1). The LSD1 complex contains a number of proteins, all of which have been assigned roles in events upstream of LSD1-mediated demethylation2,3,4 apart from BHC80 (also known as PHF21A), a plant homeodomain (PHD) finger-containing protein. Here we report that, in contrast to the PHD fingers of the bromodomain PHD finger transcription factor (BPTF) and inhibitor of growth family 2 (ING2), which bind methylated H3K4 (H3K4me3)5,6, the PHD finger of BHC80 binds unmethylated H3K4 (H3K4me0), and this interaction is specifically abrogated by methylation of H3K4. The crystal structure of the PHD finger of BHC80 bound to an unmodified H3 peptide has revealed the structural basis of the recognition of H3K4me0. Knockdown of BHC80 by RNA inhibition results in the de-repression of LSD1 target genes, and this repression is restored by the reintroduction of wild-type BHC80 but not by a PHD-finger mutant that cannot bind H3. Chromatin immunoprecipitation showed that BHC80 and LSD1 depend reciprocally on one another to associate with chromatin. These findings couple the function of BHC80 to that of LSD1, and indicate that unmodified H3K4 is part of the 'histone code'7. They further raise the possibility that the generation and recognition of the unmodified state on histone tails in general might be just as crucial as post-translational modifications of histone for chromatin and transcriptional regulation.
0
Citation418
0
Save
0

Ezrin defines TSC1 activation at endosomal compartments through EGFR-AKT signaling

Giuliana Giamundo et al.May 7, 2024
Abstract Endosomes have emerged as major signaling hubs where different internalized ligand-receptor complexes are integrated and the outcome of signaling pathways are organized to regulate the strength and specificity of signal transduction events. Ezrin, a major membrane-actin linker that assembles and coordinates macromolecular signaling complexes at membranes, has emerged recently as an important regulator of lysosomal function. Here, we report that endosomal-localized EGFR/Ezrin complex interacts with and triggers the inhibition of the Tuberous Sclerosis Complex (TSC) in response to EGF stimuli. This is regulated through activation of the AKT signaling pathway. Loss of Ezrin was deficient in TSC repression by EGF and culminated in translocation of TSC to lysosomes triggering suppression of mTORC1 signaling. Overexpression of constitutively active EZRIN T567D is sufficient to relocalize TSC to the endosomes and reactivate mTORC1. Our findings identify EZRIN as a critical regulator of autophagy via TSC in response to EGF stimuli and establish the central role of early endosomal signaling in the regulation of mTORC1. Consistently, Medaka fish deficient for Ezrin exhibit defective endo-lysosomal pathway, attributable to the compromised EGFR/AKT signaling, ultimately leading to retinal degeneration. Our data identify a pivotal mechanism of endo-lysosomal signaling involving Ezrin and its associated EGFR/TSC complex, which are essential for retinal function.
0
Citation1
0
Save
Load More