JN
Joël Nicolet
Author with expertise in Molecular Mechanisms of Plant Development and Regulation
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
1
h-index:
6
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Inositol pyrophosphate catabolism by three families of phosphatases controls plant growth and development

F. Laurent et al.Apr 30, 2024
Inositol pyrophosphates (PP-InsPs) are nutrient messengers whose cellular concentration must be tightly regulated. Diphosphoinositol pentakisphosphate kinases (PPIP5Ks) generate the active signaling molecule 1,5-InsP8. PPIP5Ks contain additional phosphatase domains involved in PP-InsP catabolism. Plant and Fungi Atypical Dual Specificity Phosphatases (PFA-DSPs) and NUDIX phosphatases (NUDTs) also hydrolyze PP-InsPs. Here we dissect the relative contributions of the three different phosphatase families to plant PP-InsP catabolism and nutrient signaling. We report the biochemical characterization of inositol pyrophosphate phosphatases from Arabidopsis and Marchantia polymorpha. Overexpression of different PFA-DSP and NUDT enzymes affects PP-InsP levels and leads to stunted growth phenotypes in Arabidopsis. nudt17/18/21 knock-out mutants have altered PP-InsP pools and gene expression patterns, but no apparent growth defects. In contrast, Marchantia polymorpha Mppfa-dsp1ge, Mpnudt1ge and Mpvip1ge mutants display severe growth and developmental phenotypes associated with changes in cellular PP-InsP levels. Analysis of Mppfa-dsp1geand Mpvip1ge supports a role for PP-InsPs in Marchantia phosphate signaling, and additional functions in nitrate homeostasis and cell wall biogenesis. Simultaneous removal of two phosphatase activities enhances the observed growth phenotypes. Taken together, PPIP5K, PFA-DSP and NUDT inositol pyrophosphate phosphatases play important roles in growth and development by collectively shaping plant PP-InsP pools.
0

Constitutive activation of leucine-rich repeat receptor kinase signaling pathways by BAK1-interacting receptor-like kinase 3 chimera

Ulrich Hohmann et al.Feb 19, 2020
Receptor kinases with extracellular leucine-rich repeat domains (LRR-RKs) form the largest group of membrane signaling proteins in plants. LRR-RKs can sense small molecule, peptide or protein ligands, and may be activated by ligand-induced interaction with a shape complementary SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptor kinase. We have previously shown that SERKs can also form constitutive, ligand-independent complexes with the LRR ectodomains of BAK1-interacting receptor-like kinase 3 (BIR3) receptor pseudokinases, negative regulators of LRR-RK signaling. Here we report that receptor chimaera in which the extracellular LRR domain of BIR3 is fused to the cytoplasmic kinase domains of the SERK-dependent LRR-RKs BRASSINOSTEROID INSENSITIVE1, HAESA and ERECTA form tight complexes with endogenous SERK co-receptors in the absence of ligand stimulus. Expression of these chimaera under the control of the endogenous promoter of the respective LRR-RK leads to strong gain-of-function brassinosteroid, floral abscission and stomatal patterning phenotypes, respectively. Importantly, a BIR3-GSO1/SGN3 chimera can partially complement sgn3 Casparian strip formation phenotypes, suggesting that GSO1/SGN3 receptor activation is also mediated by SERK proteins. Collectively, our protein engineering approach may be used to elucidate the physiological functions of orphan LRR-RKs and to identify their receptor activation mechanism in single transgenic lines.