GD
George Dassow
Author with expertise in Optogenetics in Neuroscience and Biophysics Research
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(67% Open Access)
Cited by:
2,236
h-index:
31
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
58

A versatile pattern-forming cortical circuit based on Rho, F-actin, Ect2, and RGA-3/4

Ani Michaud et al.Mar 8, 2022
Abstract Many cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains poorly understood. We assessed the role of the Rho GAP RGA-3/4 in the cortical excitability that accompanies cytokinesis in both frog and starfish. RGA-3/4 localizes to the cytokinetic apparatus, “chases” Rho waves in an F-actin-dependent manner and, when co-expressed with the Rho GEF Ect2, is sufficient to convert the normally quiescent, immature Xenopus oocyte cortex into a dramatically excited state. Experiments and modeling show that changing the ratio of RGA-3/4 to Ect2 produces a range of cortical behaviors from pulses to complex waves of Rho activity. We conclude that RGA-3/4, Ect2, Rho and F-actin form the core of a circuit that drives a diverse range of cortical behaviors, and demonstrate that the immature oocyte is a powerful model for characterizing these dynamics. Summary Michaud et al. identify Ect2 and RGA-3/4 as core components of the cortical excitability circuit associated with cytokinesis. Additionally, they demonstrate that the immature Xenopus oocyte is a powerful model for characterizing excitable dynamics.
58
Citation1
0
Save
0

Testing models of cell cortex wave generation by Rho GTPases

Dominic Chomchai et al.Apr 30, 2024
Summary The Rho GTPases pattern the cell cortex in a variety of fundamental cell-morphogenetic processes including division, wound repair, and locomotion. It has recently become apparent that this patterning arises from the ability of the Rho GTPases to self-organize into static and migrating spots, contractile pulses, and propagating waves in cells from yeasts to mammals 1 . These self-organizing Rho GTPase patterns have been explained by a variety of theoretical models which require multiple interacting positive and negative feedback loops. However, it is often difficult, if not impossible, to discriminate between different models simply because the available experimental data do not simultaneously capture the dynamics of multiple molecular concentrations and biomechanical variables at fine spatial and temporal resolution. Specifically, most studies typically provide either the total Rho GTPase signal or the Rho GTPase activity as reported by various sensors, but not both. Therefore, it remains largely unknown how membrane accumulation of Rho GTPases (i.e., Rho membrane enrichment) is related to Rho activity. Here we dissect the dynamics of RhoA by simultaneously imaging both total RhoA and active RhoA in the regime of acute cortical excitability 2 , characterized by pronounced waves of Rho activity and F-actin polymerization 3-5 . We find that within nascent waves, accumulation of active RhoA precedes that of total RhoA, and we exploit this finding to distinguish between two popular theoretical models previously used to explain propagating cortical Rho waves.
0

Direct observation of the setular web that fuses thoracopodal setae of a calanoid copepod into a collapsible fan

George Dassow et al.Oct 17, 2019
Copepods are numerically dominant planktonic grazers throughout the waters of Earth, preyed upon in turn by a wide diversity of pelagic animals (1,2). Their feeding and swimming performance thus has global importance to aquatic food webs and oceanic carbon flux. These crustaceans swim and feed using cuticle-covered, segmented, muscular appendages whose reach is extended greatly by setae, extracellular chitinous extensions with diverse structure and function (3). Plumose setae, with subsidiary setules arranged like barbs on a feather, have well-documented roles in generating feeding and swimming currents (4,5). Recent work showed that plumose setae of barnacle cyprid thoracopods are permanently linked by setules into a single fan that opens and closes as one sheet during high-speed swimming (6). Intersetular linkage across cyprid thoracopods may greatly decrease leakage between extended setae, ensure even spread of setae within the fan, and promote ordered collapse of the fan to avoid entanglement of adjacent appendages. Here we demonstrate similar setular webbing amongst thoracopod setae in the calanoid copepod Acartia sp. High-speed video directly documents the existence of such links, and reveals that individuals experience apparently-irreparable degradation of the setal array due to de-linkage, with likely consequences for swimming performance.
0
0
Save