JB
Judith Behnsen
Author with expertise in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(100% Open Access)
Cited by:
276
h-index:
16
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

IFI207, a young and fast-evolving protein, controls retroviral replication via the STING pathway

Eileen Moran et al.May 1, 2024
ABSTRACT Mammalian AIM-2-like receptor (ALR) proteins bind nucleic acids and initiate production of type I interferons or inflammasome assembly, thereby contributing to host innate immunity. In mice, the Alr locus is highly polymorphic at the sequence and copy number level and we show here, is one of the most dynamic regions of the genome. One rapidly evolving gene within this region, Ifi207 , was introduced to the Mus genome by gene conversion or an unequal recombination event a few million years ago. Ifi207 has a large, distinctive repeat region that differs in sequence and length among Mus species and even closely related inbred Mus musculus strains. We show that IFI207 controls MLV infection in vivo and that it plays a role in the STING-mediated response to cGAMP, dsDNA, DMXXA and MLV. IFI207 binds to STING and inclusion of its repeat region appears to stabilize STING protein. The Alr locus and Ifi207 provide a clear example of the evolutionary innovation of gene function, possibly as a result of host-pathogen co-evolution. IMPORTANCE The Red Queen hypothesis predicts that the arms race between pathogens and the host may accelerate evolution of both sides, and therefore cause higher diversity in virulence factors and immune-related proteins, respectively (1). The Alr gene family in mice has undergone rapid evolution in the last few million years and includes the creation of two novel members, MndaL and Ifi207 . Ifi207 in particular became highly divergent, with significant genetic changes between highly related inbred mice. IFI207 protein acts in the STING pathway and contributes to anti-retroviral resistance via a novel mechanism. The data show that under the pressure of host-pathogen coevolution in a dynamic locus, gene conversion and recombination between gene family members creates new genes with novel and essential functions that play diverse roles in biological processes.
1

Salmonella enterica serovar Typhimurium chitinases modulate the intestinal glycome and promote small intestinal invasion

Jason Devlin et al.Dec 6, 2021
Abstract Salmonella enterica serovar Typhimurium ( Salmonella ) is one of the leading causes of food-borne illnesses worldwide. To colonize the gastrointestinal tract, Salmonella produces multiple virulence factors that facilitate cellular invasion. Chitinases have been recently emerging as virulence factors for various pathogenic bacterial species and the Salmonella genome contains two annotated chitinases: STM0018 ( chiA ) and STM0233 . However, the role of these chitinases during Salmonella pathogenesis is unknown. The putative chitinase STM0233 has not been studied previously and only limited data exists on ChiA. Chitinases typically hydrolyze chitin polymers, which are absent in vertebrates. However, chiA expression was detected in infection models and purified ChiA cleaved carbohydrate subunits present on mammalian surface glycoproteins, indicating a role during pathogenesis. Here, we demonstrate that expression of chiA and STM0233 is upregulated in the mouse gut and that both chitinases facilitate epithelial cell adhesion and invasion. Salmonella lacking both chitinases showed a 70% reduction in invasion of small intestinal epithelial cells in vitro . In a gastroenteritis mouse model, chitinase-deficient Salmonella strains were also significantly attenuated in the invasion of small intestinal tissue. This reduced invasion resulted in significantly delayed Salmonella dissemination to the spleen and the liver, but chitinases were not required for systemic survival. The invasion defect of the chitinase-deficient strain was rescued by the presence of wild-type Salmonella , suggesting that chitinases are secreted. By analyzing N -linked glycans of small intestinal cells, we identified specific N -acetylglucosamine-containing glycans as potential extracellular targets of Salmonella chitinases. This analysis also revealed differential abundance of Lewis X-containing glycans that is likely a result of host cell modulation due to the detection of Salmonella chitinases. Similar glycomic changes elicited by chitinase deficient strains indicate functional redundancy of the chitinases. Overall, our results demonstrate that Salmonella chitinases contribute to intestinal adhesion and invasion through modulation of the host glycome. Author Summary Salmonella Typhimurium infection is one of the leading causes of food-borne illnesses worldwide. In order for Salmonella to effectively cause disease, it has to invade the epithelial cells lining the intestinal tract. This invasion step allows Salmonella to replicate efficiently, causing further tissue damage and inflammation. In susceptible patients, Salmonella can spread past the intestines and infect peripheral organs. It is essential to fully understand the invasion mechanism used by Salmonella to design better treatments for infection. Here, we demonstrate that the two chitinases produced by Salmonella are involved in this invasion process. We show that Salmonella chitinases interact with surface glycans of intestinal epithelial cells and promote adhesion and invasion. Using a mouse infection model, we show that Salmonella chitinases are required for the invasion of the small intestine and enhance the dissemination of Salmonella to other organs. This study reveals an additional mechanism by which Salmonella invades and causes infection.
1

Proteus mirabilisemploys a contact-dependent killing system against competingEnterobacteriaceae

Dara Kiani et al.Mar 20, 2021
ABSTRACT Many bacterial species encode systems for interference competition with other microorganisms. Some systems are effective without contact (e.g. through secretion of toxins), while other systems (e.g. Type VI secretion system (T6SS)) require direct contact between cells. Here, we provide the initial characterization of a novel contact-dependent competition system for Proteus mirabilis . In neonatal mice, a commensal P. mirabilis strain apparently eliminated commensal Escherichia coli . We replicated the phenotype in vitro and showed that P. mirabilis efficiently reduced viability of several Enterobacteriaceae species, but not Gram-positive species or yeast cells. Importantly, P. mirabilis strains isolated from humans also killed E. coli . Reduction of viability occurred from early stationary phase to 24h of culture and was observed in shaking liquid media as well as on solid media. Killing required contact, but was independent of T6SS, the only contact-dependent killing system described for P. mirabilis . Expression of the killing system was regulated by osmolarity and components secreted into the supernatant. Stationary phase P. mirabilis culture supernatant itself did not kill but was sufficient to induce killing in an exponentially growing co-culture. In contrast, killing was largely prevented in media with low osmolarity. In summary, we provide the initial characterization of a potentially novel interbacterial competition system encoded in P. mirabilis . IMPORTANCE The study of bacterial competition systems has received significant attention in recent years. These systems collectively shape the composition of complex ecosystems like the mammalian gut. They are also being explored as narrow-spectrum alternatives to specifically eliminate problematic pathogenic species. However, many competition systems that effectively work in vitro do not show strong phenotypes in the gut. Our study was informed by an observation in infant mice. Further in vitro studies confirmed that P. mirabilis was able to kill several Enterobacteriaceae species. This killing system is novel for P. mirabilis and might represent a new function of a known system or even a novel system, as the observed characteristics do not fit with described contact-dependent competition systems. Competition systems are frequently present in multiple Enterobacteriaceae species. If present or transferred into a probiotic, it might be used in the future to reduce blooms of pathogenic Enterobacteriaceae associated with disease.