A bstract Understanding the dynamics to acute HIV infection may provide insights into the mechanisms of early viral control with potential implications for vaccine design. The standard viral dynamics model explains HIV viral dynamics during acute infection reasonably well. However, the model makes simplifying assumptions, neglecting some aspects of HIV. For example, in the standard model, target cells are infected by a single HIV virion. Yet, cellular multiplicity of infection (MOI) may have considerable effects in pathogenesis and viral evolution. Further, when using the standard model, we take constant infected cell death rates, simplifying the dynamic immune responses. Here, we use four models—1) the standard viral dynamics model, 2) an alternate model incorporating cellular MOI, 3) a model assuming density-dependent death rate of infected cells and 4) a model combining (2) and (3)—to investigate acute infection dynamics in 43 people tested very early after HIV exposure. We find that all models explain the data, but different models describe differing features of the dynamics more accurately. For example, while the standard viral dynamics model may be the most parsimonious model, viral peaks are better explained by a model allowing for cellular MOI. These results suggest that heterogeneity in within-host viral dynamics cannot be captured by a single model. Thus depending on the aspect of interest, a corresponding model should be employed.