KP
Kira Poskanzer
Author with expertise in Molecular Mechanisms of Synaptic Plasticity and Neurological Disorders
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(67% Open Access)
Cited by:
1
h-index:
22
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
60

Dopamine Activates Astrocytes in Prefrontal Cortex via α1-Adrenergic Receptors

Silvia Pittolo et al.Jul 20, 2022
+7
D
S
S
Summary The prefrontal cortex (PFC) is a hub for cognitive control, and dopamine profoundly influences its functions. In other brain regions, astrocytes sense diverse neurotransmitters and neuromodulators and, in turn, orchestrate regulation of neuroactive substances. However, basic physiology of PFC astrocytes, including which neuromodulatory signals they respond to and how they contribute to PFC function, is lacking. Here, we characterize divergent signaling signatures in astrocytes of PFC and primary sensory cortex in mice, which are linked to differential responsivity to locomotion. We find that PFC astrocytes express receptors for dopamine, but are unresponsive through the G s /G i -cAMP pathway. Instead, fast calcium signals in PFC astrocytes are time-locked to dopamine release, and are mediated by α1-adrenergic receptors both ex vivo and in vivo . Further, we describe dopamine-triggered regulation of extracellular ATP at PFC astrocyte territories. Thus, we identify astrocytes as active players in dopaminergic signaling in PFC, contributing to PFC function though neuromodulator receptor crosstalk. Graphical Abstract
60
Citation1
0
Save
0

Reversible silencing of endogenous receptors in intact brain tissue using two-photon pharmacology

Silvia Pittolo et al.Jan 9, 2019
+10
A
H
S
The physiological activity of proteins is often studied with loss-of-function genetic approaches, but the corresponding phenotypes develop slowly and can be confounding. Photopharmacology allows direct, fast and reversible control of endogenous protein activity, with spatiotemporal resolution set by the illumination method. Here, we combine a photoswitchable allosteric modulator (alloswitch) and two-photon excitation (2PE) using pulsed near-infrared lasers to reversibly silence metabotropic glutamate receptor 5 (mGlu5) activity in intact brain tissue. Endogenous receptors can be photoactivated in neurons and astrocytes with pharmacological selectivity and with an axial resolution between 5 and 10 μm. Thus, two-photon pharmacology (2PP) using alloswitch allows investigating mGlu5-dependent processes in wild type animals, including synaptic formation and plasticity, and signaling pathways from intracellular organelles.
0

Deformable mirror-based two-photon microscopy for axial mammalian brain imaging

Alba Peinado et al.Aug 21, 2019
K
S
E
A
This work presents the design and implementation of an enhanced version of a traditional two-photon (2P) microscope with the addition of high-speed axial scanning for live mammalian brain imaging. Our implementation utilizes a deformable mirror (DM) that can rapidly apply different defocus shapes to manipulate the laser beam divergence and consequently control the axial position of the beam focus in the sample. We provide a mathematical model describing the DM curvature, then experimentally characterize the radius of curvature as well as the Zernike terms of the DM surface for a given set of defocuses. A description of the optical setup of the 2P microscope is detailed. We conduct a thorough calibration of the system, determining the point spread function, the total scanning range, the axial step size, and the intensity curvature as a function of depth. Finally, the instrument is used for imaging different neurobiological samples, including fixed brain slices and in vivo mouse cerebral cortex.
0

A Photoactivatable Norepinephrine for Probing Adrenergic Neural Circuits

Michelle Cahill et al.Nov 16, 2023
+2
A
Y
M
Norepinephrine (NE) is a critical neuromodulator that mediates a wide range of behavior and neurophysiology, including attention, arousal, plasticity, and memory consolidation. A major source of NE is the brainstem nucleus the locus coeruleus (LC), which sends widespread projections throughout the central nervous system (CNS). Efforts to dissect this complex noradrenergic circuitry have driven the development of many tools that detect endogenous NE or modulate widespread NE release via LC activation and inhibition. While these tools have enabled research that elucidates physiological roles of NE, additional tools to probe these circuits with a higher degree of spatial precision could enable a finer delineation of function. Here, we describe the synthesis and chemical properties of a photo-activatable NE, [Ru(bpy) 2 (PMe 3 )(NE)]PF 6 (RuBi-NE). We validate the one-photon (1P) release of NE using whole-cell patch clamp electrophysiology in acute mouse brain slices containing the LC. We show that a 10 ms pulse of blue light, in the presence of RuBi-NE, briefly modulates the firing rate of LC neurons via α-2 adrenergic receptors. The development of a photo-activatable NE that can be released with light in the visible spectrum provides a new tool for fine-grained mapping of complex noradrenergic circuits, as well as the ability to probe how NE acts on non-neuronal cells in the CNS.
0

An event-based paradigm for analyzing fluorescent astrocyte activity uncovers novel single-cell and population-level physiology

Yizhi Wang et al.Dec 21, 2018
+5
M
X
Y
Recent work examining astrocytic physiology centers on fluorescence imaging approaches, due to development of sensitive fluorescent indicators and observation of spatiotemporally complex calcium and glutamate activity. However, the field remains hindered in fully characterizing these dynamics, both within single cells and at the population-level, because of the insufficiency of current region-of-interest-based approaches to describe activity that is often spatially unfixed, size-varying, and propagative. Here, we present a paradigm-shifting analytical framework that releases astrocyte biologists from ROI-based tools. Astrocyte Quantitative Analysis (AQuA) software enables users to take an event-based approach to accurately capture and quantify the irregular activity observed in astrocyte imaging datasets. We apply AQuA to a range of ex vivo and in vivo imaging data, and uncover previously undescribed physiological phenomena in each. Since AQuA is data-driven and based on machine learning principles, it can be applied across model organisms, fluorescent indicators, experimental modes, and imaging resolutions and speeds, enabling researchers to elucidate fundamental astrocyte physiology.
31

Astrocytic Gi-GPCR activation enhances stimulus-evoked extracellular glutamate

Trisha Vaidyanathan et al.May 13, 2022
K
E
V
T
Abstract Astrocytes perform critical functions in the nervous system, many of which are dependent on neurotransmitter-sensing through G protein-coupled receptors (GPCRs). However, whether specific astrocytic outputs follow specific GPCR activity remains unclear, and exploring this question is critical for understanding how astrocytes ultimately influence brain function and behavior. We previously showed that astrocytic Gi-GPCR activation is sufficient to increase slow-wave neural activity (SWA) during sleep when activated in cortical astrocytes 1 . Here, we investigate the outputs of astrocytic Gi-GPCRs, focusing on the regulation of extracellular glutamate and GABA, by combining in vivo fiber photometry recordings of the extracellular indicators iGluSnFR and iGABASnFR with astrocyte-specific chemogenetic Gi-GPCR activation. We find that Gi-GPCR activation does not change spontaneous dynamics of extracellular glutamate or GABA. However, Gi-GPCR activation does specifically increase visual stimulus-evoked extracellular glutamate. Together, these data point towards a complex relationship between astrocytic inputs and outputs in vivo that may depend on behavioral context. Further, they suggest an extracellular glutamate-specific mechanism underlying some astrocytic Gi-GPCR-dependent behaviors, including the regulation of sleep SWA.
23

A DNA-based optical nanosensor for in vivo imaging of acetylcholine in the peripheral nervous system

Junfei Xia et al.Jul 6, 2020
+4
M
H
J
Abstract The ability to monitor the release of neurotransmitters during synaptic transmission would significantly impact the diagnosis and treatment of neurological disease. Here, we present a DNA-based enzymatic nanosensor for quantitative detection of acetylcholine (ACh) in the peripheral nervous system of living mice. ACh nanosensors consist of DNA as a scaffold, acetylcholinesterase as a recognition component, pH-sensitive fluorophores as signal generators, and α-bungarotoxin as a targeting moiety. We demonstrate the utility of the nanosensors in the submandibular ganglia of living mice to sensitively detect ACh ranging from 0.228 μM to 358 μM. In addition, the sensor response upon electrical stimulation of the efferent nerve is dose-dependent, reversible, and we observe a reduction of ~76% in sensor signal upon pharmacological inhibition of ACh release. Equipped with an advanced imaging processing tool, we further spatially resolve ACh signal propagation on the tissue level. Our platform enables sensitive measurement and mapping of ACh transmission in the peripheral nervous system.
0

Network-level encoding of local neurotransmitters in cortical astrocytes

Michelle Cahill et al.Dec 4, 2023
+4
V
M
M
Summary Paragraph Astrocytes—the most abundant non-neuronal cell type in the mammalian brain—are crucial circuit components that respond to and modulate neuronal activity via calcium (Ca 2+ ) signaling 1–8 . Astrocyte Ca 2+ activity is highly heterogeneous and occurs across multiple spatiotemporal scales: from fast, subcellular activity 3,4 to slow, synchronized activity that travels across connected astrocyte networks 9–11 . Furthermore, astrocyte network activity has been shown to influence a wide range of processes 5,8,12 . While astrocyte network activity has important implications for neuronal circuit function, the inputs that drive astrocyte network dynamics remain unclear. Here we used ex vivo and in vivo two-photon Ca 2+ imaging of astrocytes while mimicking neuronal neurotransmitter inputs at multiple spatiotemporal scales. We find that brief, subcellular inputs of GABA and glutamate lead to widespread, long-lasting astrocyte Ca 2+ responses beyond an individual stimulated cell. Further, we find that a key subset of Ca 2+ activity—propagative events—differentiates astrocyte network responses to these two major neurotransmitters, and gates responses to future inputs. Together, our results demonstrate that local, transient neurotransmitter inputs are encoded by broad cortical astrocyte networks over the course of minutes, contributing to accumulating evidence across multiple model organisms that significant astrocyte-neuron communication occurs across slow, network-level spatiotemporal scales 13–15 . We anticipate that this study will be a starting point for future studies investigating the link between specific astrocyte Ca 2+ activity and specific astrocyte functional outputs, which could build a consistent framework for astrocytic modulation of neuronal activity.
0

Fast, Accurate, and Versatile Data Analysis Platform for the Quantification of Molecular Spatiotemporal Signals

Xuelong Mi et al.May 5, 2024
+18
Y
M
X
Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce Activity Quantification and Analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine learning techniques. It decomposes complex live imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, and imaging modalities. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, and distinct sensorimotor signal propagation patterns in the mouse spinal cord.