MS
Marco Savarese
Author with expertise in Diagnosis and Management of Hypertrophic Cardiomyopathy
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
4
h-index:
29
/
i10-index:
55
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

Comprehensive transcriptomic analysis shows disturbed calcium homeostasis and deregulation of T lymphocyte apoptosis in inclusion body myositis

Mridul Johari et al.Jul 1, 2021
Abstract Objective Inclusion body myositis (IBM) has an unclear molecular etiology due to the co-existence of characteristic cytotoxic T-cell activity and degeneration of muscle fibers. Using in-depth gene expression and splicing studies, we aimed at understanding the different components of the molecular pathomechanisms in IBM. Methods We performed RNA-seq on RNA extracted from skeletal muscle biopsies of clinically and histopathologically defined IBM (n=24), tibial muscular dystrophy (n=6), and histopathologically normal group (n=9). In a comprehensive transcriptomics analysis, we analyzed the differential gene expression, differential splicing and exon usage, downstream pathway analysis, and the interplay between coding and non-coding RNAs (micro RNAs and long non-coding RNAs). Results We observe dysregulation of genes involved in calcium homeostasis, particularly affecting the T-cell activity and regulation, causing disturbed Ca 2+ induced apoptotic pathway of T cells in IBM muscles. Additionally, LCK/p56, which is an essential gene in regulating the fate of T-cell apoptosis, shows altered expression and splicing usage in IBM muscles Interpretation Our analysis provides a novel understanding of the molecular mechanisms in IBM by showing a detailed dysregulation of genes involved in calcium homeostasis and its effect on T-cell functioning in IBM muscles. Loss of T-cell regulation is hypothesized to be involved in the consistent observation of no response to immune therapies in IBM patients. Our results show that loss of apoptotic control of cytotoxic T cells could indeed be one component of their abnormal cytolytic activity in IBM muscles.
5
Citation2
0
Save
10

Biallelic loss-of-function OBSCN variants predispose individuals to severe, recurrent rhabdomyolysis

Macarena Cabrera‐Serrano et al.Jun 4, 2021
ABSTRACT Rhabdomyolysis is the acute breakdown of skeletal myofibres in response to an initiating factor, most commonly toxins and over exertion. A variety of genetic disorders predispose to rhabdomyolysis through different pathogenic mechanisms, particularly in patients with recurrent episodes. However, the majority of cases remain without a genetic diagnosis. Here we present six patients who presented with severe and recurrent rhabdomyolysis, usually with onset in the teenage years; other features included a history of myalgia and muscle cramps. We identified ten bi-allelic loss-of-function variants in the gene encoding obscurin ( OBSCN ) co-segregating with disease. We show reduced expression of OBSCN and loss of obscurin protein in patient muscle. Obscurin is proposed to be involved in SR function and Ca 2+ handling. Patient cultured myoblasts appear more susceptible to starvation as evidenced by a greater decreased in SR Ca 2+ content compared to control myoblasts. This likely reflects a lower efficiency when pumping Ca 2+ back into the SR and/or a decrease in Ca 2+ SR storage ability when metabolism is diminished. OSBCN variants have previously been associated with cardiomyopathies. None of the patients presented with a cardiomyopathy and cardiac examinations were normal in all cases in which cardiac function was assessed. There was also no history of cardiomyopathy in first degree relatives, in particular in any of the carrier parents. This cohort is relatively young, thus follow-up studies and the identification of additional cases with bi-allelic null OBSCN variants will further delineate OBSCN -related disease and the clinical course of disease.
10
Citation1
0
Save
2

Differential Effects of Mutations of Popeye Domain Containing Proteins on Heteromeric Interaction and Membrane Trafficking

Alexander Swan et al.Oct 17, 2022
Abstract Background The Popeye domain containing (POPDC) genes encode sarcolemma-localised cAMP effector proteins. Mutations in BVES (POPDC1) and POPDC2 have been associated with limb-girdle muscular dystrophy and cardiac arrhythmia. Muscle biopsies of affected patients display impaired membrane trafficking of both POPDC isoforms. Methods Biopsy material of patients carrying mutations in BVES were immunostained with POPDC antibodies. The interaction of POPDC proteins was investigated by co-precipitation, proximity ligation, bioluminescence resonance energy transfer and bimolecular fluorescence complementation. Site-directed mutagenesis was utilised to map the domains involved in protein interaction. Findings Patients carrying a novel homozygous variant, BVES (c.547G>T, p.V183F) displayed only a skeletal muscle pathology and a mild impairment of membrane trafficking of both POPDC isoforms. This is in contrast to variants such as BVES p.Q153X or POPDC2 p.W188X, which were associated with a greater impairment of membrane trafficking. Co-transfection analysis in HEK293 cells revealed that POPDC proteins interact with each other through a helix-helix interface located at the C-terminus of the Popeye domain. Site-directed mutagenesis of an array of ultra-conserved hydrophobic residues demonstrated that some of them are required for membrane trafficking of the POPDC1-POPDC2 complex. Interpretation Mutations in POPDC proteins that cause an impairment in membrane localisation affect POPDC complex formation while mutations which leave the protein interaction intact likely affect some other essential function of POPDC proteins. Funding This study was funded by an EPSRC/British Heart Foundation co-funded Imperial Institute of Chemical Biology (ICB) Centre for Doctoral Training (CDT) PhD studentship (EP/S023518/1), a project grant of the British Heart Foundation (PG19/13/34247) and the Deutsche Forschungsgemeinschaft (DE1482/9-1). Research in Context Evidence before this study Several biallelic missense and nonsense variants in BVES (POPDC1) have been described and are associated with heart and skeletal muscle disease. Skeletal muscle biopsies of homozygous carriers of these variants display a loss of sarcolemmal localisation of POPDC1 and POPDC2. Added value of this study We demonstrate that POPDC1 and POPDC2 form a heteromeric complex and that complex formation is required for plasma membrane trafficking of POPDC proteins. Transfection of different disease variants in HEK293 cells replicates their defective membrane targeting observed in biopsy material. Structural modelling and site-directed mutagenesis identifies an interface of strongly conserved hydrophobic residues in POPDC proteins, which likely mediate the interaction of POPDC proteins. Implications of all the available evidence These data provide novel insight into the membrane targeting requirements of POPDC proteins. We recommend testing the membrane targeting properties of any novel variant in POPDC isoforms using a newly developed co-transfection assay in HEK293 cells to characterise its pathogenicity. Our novel insight into the requirement of heterodimerization for proper membrane targeting may also offer novel opportunities to treat patients carrying mutations in POPDC proteins.