FC
Fang Chen
Author with expertise in Nanoparticle-Based Drug Delivery Systems
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(64% Open Access)
Cited by:
4,151
h-index:
52
/
i10-index:
118
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Methotrexate‐Immobilized Poly(ethylene glycol) Magnetic Nanoparticles for MR Imaging and Drug Delivery

Nathan Kohler et al.Apr 25, 2006
We report the development of a biostable methotrexate-immobilized iron oxide nanoparticle drug carrier that may potentially be used for real-time monitoring of drug delivery through magnetic resonance imaging. Methotrexate (MTX) was immobilized on the nanoparticle surface via a poly(ethylene glycol) self-assembled monolayer (PEG SAM). The cytotoxicity of the nanoparticle-drug conjugate (NP-PEG-MTX) to target cells was studied with 9L glioma cells. Cellular uptake experiments showed that the uptake of NP-PEG-MTX conjugates by glioma cells was considerably higher than that of control nanoparticles. Magnetic resonance imaging in 9L cells cultured with NP-PEG-MTX of various concentrations showed significant contrast enhancement. NP-PEG-MTX demonstrated higher cytotoxicity in 9L cells to free MTX in vitro. Leucovorin, an MTX antidote, was used to rescue the cells that had been exposed to NP-PEG-MTX or free MTX, and the experiment verified the biocompatibility of NP-PEG-MTX conjugates and the MTX on NP-PEG-MTX conjugates to be the true source of the cytotoxicity to the target cells. TEM results showed that NP-PEG-MTX conjugates were internalized into the 9L cellular cytoplasm and retained its crystal structure therein for up to 144 h, as identified by electron diffraction. This prolonged particle retention may allow physicians to image tumor cells exposed to the NP-PEG-MTX conjugate over an extended therapeutic time course.
0
Paper
Citation402
0
Save
0

PEI–PEG–Chitosan‐Copolymer‐Coated Iron Oxide Nanoparticles for Safe Gene Delivery: Synthesis, Complexation, and Transfection

Forrest Kievit et al.May 21, 2009
Abstract Gene therapy offers the potential of mediating disease through modification of specific cellular functions of target cells. However, effective transport of nucleic acids to target cells with minimal side effects remains a challenge despite the use of unique viral and non‐viral delivery approaches. Here, a non‐viral nanoparticle gene carrier that demonstrates effective gene delivery and transfection both in vitro and in vivo is presented. The nanoparticle system (NP–CP–PEI) is made of a superparamagnetic iron oxide nanoparticle (NP), which enables magnetic resonance imaging, coated with a novel copolymer (CP–PEI) comprised of short chain polyethylenimine (PEI) and poly(ethylene glycol) (PEG) grafted to the natural polysaccharide, chitosan (CP), which allows efficient loading and protection of the nucleic acids. The function of each component material in this nanoparticle system is illustrated by comparative studies of three nanoparticle systems of different surface chemistries, through material property characterization, DNA loading and transfection analyses, and toxicity assessment. Significantly, NP–CP–PEI demonstrates an innocuous toxic profile and a high level of expression of the delivered plasmid DNA in a C6 xenograft mouse model, making it a potential candidate for safe in vivo delivery of DNA for gene therapy.
0
Citation363
0
Save
0

Specific Targeting of Brain Tumors with an Optical/Magnetic Resonance Imaging Nanoprobe across the Blood-Brain Barrier

Omid Veiseh et al.Jul 29, 2009
Abstract Nanoparticle-based platforms have drawn considerable attention for their potential effect on oncology and other biomedical fields. However, their in vivo application is challenged by insufficient accumulation and retention within tumors due to limited specificity to the target, and an inability to traverse biological barriers. Here, we present a nanoprobe that shows an ability to cross the blood-brain barrier and specifically target brain tumors in a genetically engineered mouse model, as established through in vivo magnetic resonance and biophotonic imaging, and histologic and biodistribution analyses. The nanoprobe is comprised of an iron oxide nanoparticle coated with biocompatible polyethylene glycol–grafted chitosan copolymer, to which a tumor-targeting agent, chlorotoxin, and a near-IR fluorophore are conjugated. The nanoprobe shows an innocuous toxicity profile and sustained retention in tumors. With the versatile affinity of the targeting ligand and the flexible conjugation chemistry for alternative diagnostic and therapeutic agents, this nanoparticle platform can be potentially used for the diagnosis and treatment of a variety of tumor types. [Cancer Res 2009;69(15):6200–7]
0
Citation352
0
Save
0

In Vivo MRI Detection of Gliomas by Chlorotoxin‐Conjugated Superparamagnetic Nanoprobes

Conroy Sun et al.Jan 30, 2008
Converging advances in the development of nanoparticle-based imaging probes and improved understanding of the molecular biology of brain tumors offer the potential to provide physicians with new tools for the diagnosis and treatment of these deadly diseases. However, the effectiveness of promising nanoparticle technologies is currently limited by insufficient accumulation of these contrast agents within tumors. Here a biocompatible nanoprobe composed of a poly(ethylene glycol) (PEG) coated iron oxide nanoparticle that is capable of specifically targeting glioma tumors via the surface-bound targeting peptide, chlorotoxin (CTX), is presented. The preferential accumulation of the nanoprobe within gliomas and subsequent magnetic resonance imaging (MRI) contrast enhancement are demonstrated in vitro in 9L cells and in vivo in tumors of a xenograft mouse model. TEM imaging reveals that the nanoprobes are internalized into the cytoplasm of 9L cells and histological analysis of selected tissues indicates that there are no acute toxic effects of these nanoprobes. High targeting specificity and benign biological response establish this nanoprobe as a potential platform to aid in the diagnosis and treatment of gliomas and other tumors of neuroectodermal origin.
0
Citation309
0
Save
0

Coupling Piezocatalysis and Photocatalysis in Bi4NbO8X (X = Cl, Br) Polar Single Crystals

Cheng Hu et al.Dec 20, 2019
Abstract Reactive oxygen species (ROS) as green oxidants are of great importance for environmental and biological applications. Photocatalysis is one of the major routes for ROS evolution, which is seriously restricted by rapid charge recombination. Herein, piezocatalysis and photocatalysis (i.e., piezo–photocatalysis) are coupled to efficiently produce superoxide radicals (•O 2 − ), hydrogen peroxide (H 2 O 2 ), and hydroxyl radicals (•OH) via oxygen reduction reaction (ORR), by using Bi 4 NbO 8 X (X = Cl, Br) single crystalline nanoplates. Significantly, the piezo‐photocatalytic process leads to the highest ORR performance of the Bi 4 NbO 8 Br nanoplates, exhibiting •O 2 − , H 2 O 2 , and •OH evolution rates of 98.7, 792, and 33.2 µmol g −1 h −1 , respectively. The formation of a polarized electric field and band bending allows directional separation of charge carriers, promoting the catalytic activity. Furthermore, the reductive active sites are found enriched on all the facets in the piezo–photocatalytic process, also contributing to the ORR. By piezo–photodeposition of Pt to artificially plant reductive reactive sites, the Bi 4 NbO 8 Br plates demonstrate largely enhanced photocatalytic H 2 production activity with a rate of 203.7 µmol g −1 h −1 . The present work advances piezo–photocatalysis as a new route for ROS generation, but also discloses the potential of piezo–photocatalytic active sites enriching for H 2 evolution.
0

PEG-Mediated Synthesis of Highly Dispersive Multifunctional Superparamagnetic Nanoparticles: Their Physicochemical Properties and Function In Vivo

Conroy Sun et al.Mar 16, 2010
Multifunctional superparamagnetic nanoparticles have been developed for a wide range of applications in nanomedicine, such as serving as tumor-targeted drug carriers and molecular imaging agents. To function in vivo, the development of these novel materials must overcome several challenging requirements including biocompatibility, stability in physiological solutions, nontoxicity, and the ability to traverse biological barriers. Here we report a PEG-mediated synthesis process to produce well-dispersed, ultrafine, and highly stable iron oxide nanoparticles for in vivo applications. Utilizing a biocompatible PEG coating bearing amine functional groups, the produced nanoparticles serve as an effective platform with the ability to incorporate a variety of targeting, therapeutic, or imaging ligands. In this study, we demonstrated tumor-specific accumulation of these nanoparticles through both magnetic resonance and optical imaging after conjugation with chlorotoxin, a peptide with high affinity toward tumors of the neuroectodermal origin, and Cy5.5, a near-infrared fluorescent dye. Furthermore, we performed preliminary biodistribution and toxicity assessments of these nanoparticles in wild-type mice through histological analysis of clearance organs and hematology assay, and the results demonstrated the relative biocompatibility of these nanoparticles.
0
Paper
Citation260
0
Save
Load More