Targeted identification and purging of deleterious genetic variants has been proposed as a novel approach to animal and plant breeding. This strategy is motivated, in part, by the observation that demographic events and strong selection associated with cultivated species pose a “cost of domestication.” This includes an increase in the proportion of genetic variants where a mutation is likely to reduce fitness. Recent advances in DNA resequencing and sequence constraint-based approaches to predict the functional impact of a mutation permit the identification of putatively deleterious SNPs (dSNPs) on a genome-wide scale. Using exome capture resequencing of 21 barley 6-row spring breeding lines, we identify 3,855 dSNPs among 497,754 total SNPs. In order to polarize SNPs as ancestral versus derived, we generated whole genome resequencing data of Hordeum murinum ssp. glaucum as a phylogenetic outgroup. The dSNPs occur at higher density in portions of the genome with a higher recombination rate than in pericentromeric regions with lower recombination rate and gene density. Using 5,215 progeny from a genomic prediction experiment, we examine the fate of dSNPs over three breeding cycles. Average derived allele frequency is lower for dSNPs than any other class of variants. Adjusting for initial frequency, derived alleles at dSNPs reduce in frequency or are lost more often than other classes of SNPs. The highest yielding lines in the experiment, as chosen by standard genomic prediction approaches, carry fewer homozygous dSNPs than randomly sampled lines from the same progeny cycle. In the final cycle of the experiment, progeny selected by genomic prediction have a mean of 5.6% fewer homozygous dSNPs relative to randomly chosen progeny from the same cycle.