FL
Fabienne Lescroart
Author with expertise in Molecular Mechanisms of Cardiac Development and Regeneration
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
566
h-index:
16
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

TAK1 operates at the primary cilium in non-canonical TGFB/BMP signaling to control heart development

Canan Doğanlı et al.May 8, 2024
Summary Transforming Growth Factor-Beta-Activated Kinase 1 (TAK1/MAP3K7), along with its upstream regulators TAK1-Binding Protein 2 (TAB2) and the catalytic alpha-subunit of Protein Kinase A (PKA-Cα/PRKACA), has been identified as a pivotal player in regulation of developmental processes. Haploinsufficiency of TAB2 causes Congenital Heart Disease (CHD) and rare variants in PKA-Cα and TAK1 cause cardioacrofacial dysplasia (CAFD), and Frontometaphyseal Dysplasia (FMD) and cardiospondylocarpofacial syndrome (CSCFS), respectively, rare multisystem syndromes, where CHD may appear in the clinical spectrum. We hypothesized that TAK1 plays a significant role in heart development and CHD and addressed this by genetic analysis in CHD patient cohorts and experiments in cell and animal models. Exome sequencing data from 1,471 CHD patients with extracardiac anomalies (syndromic CHD, sCHD), 2,405 patients with nonsyndromic CHD (nsCHD) and 45,082 controls showed increased burden of rare TAB2 and TAK1 variants in sCHD, but not in nsCHD. Detailed characterization of tak1 -/- and tab2 -/- zebrafish mutants revealed cardiac defects (dilated atrium, trabeculation defects, tachycardia and reduced contractility) as well as extracardiac developmental anomalies. RNA sequencing of tak1 -/- mutant hearts showed downregulation of genes encoding core cardiac transcription factors, sarcomeric proteins and extracellular matrix proteins. Experiments with cell cultures and analysis of zebrafish larvae and gastruloids indicated that TAK1 via TAB2 and PKA-Cα is activated at the primary cilium during cardiomyogenesis and that TAK1 activation at this site is enhanced by cardiomyogenic signaling molecules, including ligands of the TGFB/BMP superfamily. Consistent with these findings, CRISPR/Cas9-mediated editing of TAK1 or administration of small molecule inhibitors targeting TAK1 inhibited ciliary signaling and cardiomyocyte differentiation in vitro , while FMD-causing mutations in TAK1 reduced its ciliary localization. In conclusion, our data establishes a central role for TAK1 and its upstream regulators in cardiac development and syndromic CHD, coordinated via the primary cilium.
29

Cardiopharyngeal Mesoderm specification into cardiac and skeletal muscle lineages in gastruloids

Laurent Argiro et al.May 15, 2023
Abstract Cardiopharyngeal mesoderm contributes to the formation of the heart and head muscles. However, the mechanisms governing cardiopharyngeal mesoderm specification remain unclear. Indeed, there is a lack of an in vitro model replicating the differentiation of both heart and head muscles to study these mechanisms. Such models are required to allow live-imaging and high throughput genetic and drug screening. Here, we show that the formation of self-organizing or pseudo-embryos from mouse embryonic stem cells (mESCs), also called gastruloids, reproduces cardiopharyngeal mesoderm specification towards cardiac and skeletal muscle lineages. By conducting a comprehensive temporal analysis of cardiopharyngeal mesoderm establishment and differentiation in gastruloids and comparing it to mouse embryos, we present the first evidence for skeletal myogenesis in gastruloids. By inferring lineage trajectories from the gastruloids single-cell transcriptomic data, we further suggest that heart and head muscles formed in gastruloids derive from cardiopharyngeal mesoderm progenitors. We identify different subpopulations of cardiomyocytes and skeletal muscles, which most likely correspond to different states of myogenesis with “head-like” and “trunk-like” skeletal myoblasts. These findings unveil the potential of mESC-derived gastruloids to undergo specification into both cardiac and skeletal muscle lineages, allowing the investigation of the mechanisms of cardiopharyngeal mesoderm differentiation in development and how this could be affected in congenital diseases.
0

Ectopic expression of Hoxb1 induces cardiac and craniofacial malformations

Stéphane Zaffran et al.Aug 3, 2018
Members of the large family of Hox transcription factors are encoded by geneswhose tightly regulated expression in development and in space within differentembryonic tissues confer positional identity from the neck to the tips of thelimbs. Many structures of the face, head, and heart10 develop from cellpopulations expressing few or no Hox genes. Hoxb1 is the member of itschromosomal cluster expressed in the most rostral domain during vertebratedevelopment, but never by the multipotent neural crest cell population anteriorto the cerebellum. We have developed a novel floxed transgenic mouse line,CAG-Hoxb1,-EGFP (CAG-Hoxb1), which upon recombination by Cre recombinaseconditionally induces robust Hoxb1 and eGFP overexpression. When induced withinthe neural crest lineage, pups die at birth. A variable phenotype develops fromE11.5 on, associating frontonasal hypoplasia/aplasia, micrognathia/agnathia,major ocular and forebrain anomalies, and cardiovascular malformations. Neuralcrest derivatives in the body appear unaffected. Transcription of effectors ofdevelopmental signaling pathways (Bmp, Shh, Vegfa) and transcription factors(Pax3, Sox9) is altered in mutants. These outcomes emphasize that repression ofHoxb1, along with other paralog group 1 and 2 Hox genes, is strictly necessaryin anterior cephalic NC for craniofacial, visual, auditory, and cardiovasculardevelopment.