AM
Adam Moeser
Author with expertise in Role of Mast Cells in Immunoregulation and Disease
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(100% Open Access)
Cited by:
964
h-index:
42
/
i10-index:
71
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Early weaning stress impairs development of mucosal barrier function in the porcine intestine

Feli Smith et al.Nov 20, 2009
Early life stress is a predisposing factor for the development of chronic intestinal disorders in adult life. Here, we show that stress associated with early weaning in pigs leads to impaired mucosal barrier function. Early weaning (15- to 21-day weaning age) resulted in sustained impairment in intestinal barrier function, as indicated by reductions in jejunal transepithelial electrical resistance and elevations in mucosal-to-serosal flux of paracellular probes [ 3 H]mannitol and [ 14 C]inulin measured at 5 and 9 wk of age, compared with that shown in late-weaned pigs (23- to 28-day weaning age). Elevated baseline short-circuit current was observed in jejunum from early-weaned pigs and was shown to be mediated via enhanced Cl − secretion. Jejunal barrier dysfunction in early-weaned pigs coincided with increased lamina propria immune cell density particularly mucosal mast cells. The mast cell stabilizer drug sodium cromoglycolate ameliorated barrier dysfunction and hypersecretion in early-weaned pigs, demonstrating an important role of mast cells. Furthermore, activation of mast cells ex vivo with c48/80 and corticotrophin-releasing factor (CRF) in pig jejunum mounted in Ussing chambers induced barrier dysfunction and elevations in short-circuit current that were inhibited with mast cell protease inhibitors. Experiments in which selective CRF receptor antagonists were administered to early-weaned pigs revealed that CRF receptor 1 (CRFr1) activation mediates barrier dysfunction and hypersecretion, whereas CRFr2 activation may be responsible for novel protective properties in the porcine intestine in response to early life stress.
0

The Fecal Virome of Pigs on a High-Density Farm

Tongling Shan et al.Sep 8, 2011
ABSTRACT Swine are an important source of proteins worldwide but are subject to frequent viral outbreaks and numerous infections capable of infecting humans. Modern farming conditions may also increase viral transmission and potential zoonotic spread. We describe here the metagenomics-derived virome in the feces of 24 healthy and 12 diarrheic piglets on a high-density farm. An average of 4.2 different mammalian viruses were shed by healthy piglets, reflecting a high level of asymptomatic infections. Diarrheic pigs shed an average of 5.4 different mammalian viruses. Ninety-nine percent of the viral sequences were related to the RNA virus families Picornaviridae , Astroviridae , Coronaviridae , and Caliciviridae , while 1% were related to the small DNA virus families Circoviridae , and Parvoviridae. Porcine RNA viruses identified, in order of decreasing number of sequence reads, consisted of kobuviruses, astroviruses, enteroviruses, sapoviruses, sapeloviruses, coronaviruses, bocaviruses, and teschoviruses. The near-full genomes of multiple novel species of porcine astroviruses and bocaviruses were generated and phylogenetically analyzed. Multiple small circular DNA genomes encoding replicase proteins plus two highly divergent members of the Picornavirales order were also characterized. The possible origin of these viral genomes from pig-infecting protozoans and nematodes, based on closest sequence similarities, is discussed. In summary, an unbiased survey of viruses in the feces of intensely farmed animals revealed frequent coinfections with a highly diverse set of viruses providing favorable conditions for viral recombination. Viral surveys of animals can readily document the circulation of known and new viruses, facilitating the detection of emerging viruses and prospective evaluation of their pathogenic and zoonotic potentials.
0
Citation327
0
Save
0

Early Weaning Stress in Pigs Impairs Innate Mucosal Immune Responses to Enterotoxigenic E. coli Challenge and Exacerbates Intestinal Injury and Clinical Disease

Brittney McLamb et al.Apr 24, 2013
Background and Aims The clinical onset and severity of intestinal disorders in humans and animals can be profoundly impacted by early life stress. Here we investigated the impact of early weaning stress in pigs on intestinal physiology, clinical disease, and immune response to subsequent challenge with enterotoxigenic F18 E. coli (ETEC). Methodology Pigs weaned from their dam at 16 d, 18 d, and 20 d of age were given a direct oral challenge of F18 ETEC at 26 d of age. Pigs were monitored from days 0 to 4 post-infection for clinical signs of disease. On Day 4 post-ETEC challenge, ileal barrier function, histopathologic and inflammatory cytokine analysis were performed on ileal mucosa. Results Early weaned pigs (16 d and 18 d weaning age) exhibited a more rapid onset and severity of diarrhea and reductions in weight gain in response to ETEC challenge compared with late weaned pigs (20 d weaning age). ETEC challenge induced intestinal barrier injury in early weaned pigs, indicated by reductions in ileal transepithelial electrical resistance (TER) and elevated FD4 flux rates, in early weaned pig ileum but not in late weaned pigs. ETEC-induced marked elevations in IL-6 and IL-8, neutrophil recruitment, and mast cell activation in late-weaned pigs; these responses were attenuated in early weaned pigs. TNF levels elevated in ETEC challenged ileal mucosa from early weaned pigs but not in other weaning age groups. Conclusions These data demonstrate the early weaning stress can profoundly alter subsequent immune and physiology responses and clinical outcomes to subsequent infectious pathogen challenge. Given the link between early life stress and gastrointestinal diseases of animals and humans, a more fundamental understanding of the mechanisms by which early life stress impacts subsequent pathophysiologic intestinal responses has implications for the prevention and management of important GI disorders in humans and animals.
0

Activity-dependent FosB gene expression negatively regulates mast cell functions

Natalia Duque‐Wilckens et al.May 10, 2024
Abstract Mast cells are innate immune cells that play a crucial role in numerous physiological processes across tissues by releasing pre-stored and newly synthesized mediators in response to stimuli, an activity largely driven by changes in gene expression. Given their widespread influence, dysfunction in mast cells can contribute to a variety of pathologies including allergies, long COVID, and autoimmune and neuroinflammatory disorders. Despite this, the specific transcriptional mechanisms that control mast cell mediator release remain poorly understood, significantly hindering the development of effective therapeutic strategies. We found that the two proteins encoded by the transcription factor FosB, FOSB and the highly stable variant ΔFOSB, are robustly expressed upon stimulation in both murine and human mast cell progenitors. Motivated by these findings, we generated a novel mouse model with targeted ablation of FosB gene expression specifically in mast cells (MC FosB- ) by crossing a mast cell-specific Cre reporter line (Mcpt5-Cre) with a Cre-dependent floxed FosB mouse lines. We found that mast cell progenitors derived from MC FosB- mice, compared to wild types (WT), exhibit baseline increased histamine content and vesicle numbers. Additionally, they show enhanced calcium mobilization, degranulation, and histamine release following allergy-related IgE-mediated stimulation, along with heightened IL-6 release in response to infection-like LPS stimulation. In vivo experiments with IgE- mediated and LPS challenges revealed that MC FosB- mice experience greater drops in body temperature, heightened activation of tissue-resident mast cells, and increased release of pro-inflammatory mediators compared to their WT counterparts. These findings suggest that FosB products play a crucial regulatory role in moderating stimulus-induced mast cell activation in response to both IgE and LPS stimuli. Lastly, by integrating CUT&RUN and RNAseq data, we identified several genes targeted by ΔFOSB that could mediate these observed effects, including Mir155hg, CLCF1, DUSP4, and Trib1. Together, this study provides the first evidence that FOSB/ΔFOSB modulate mast cell functions and provides a new possible target for therapeutic interventions aimed at ameliorating mast cell-related diseases. Graphical Abstract
1

Impaired KDM2B-mediated PRC1 recruitment to chromatin causes neural stem cell senescence and ASD/ID-like behavioral deficits

Yuen Gao et al.Sep 15, 2021
Abstract Autism spectrum disorder (ASD) and intellectual disability (ID) are neurodevelopmental diseases associated with various genetic mutations. Recent clinical studies report that chromosomal 12q24.31 microdeletions are associated with human ASD/ID. However, the causality and underlying mechanisms linking 12q24.31 microdeletions to ASD/ID pathogenesis remain undetermined. Here we show Kdm2b , one of the genes located in chromosomal 12q24.31, plays a critical role in maintaining neural stem cells (NSCs) in the developing mouse brain. Loss of the CxxC-ZF domain of KDM2B impairs its function in recruiting Polycomb repressive complex 1 (PRC1) to chromatin, resulting in de-repression of genes involved in cell apoptosis, cell cycle arrest, NSC premature senescence, and leading to the loss of NSC populations in the brain. Importantly, the Kdm2b mutation is sufficient to induce ASD/ID-like social and memory deficits in adult mice. Thus, our study reveals a critical role of an epigenetic factor KDM2B in normal brain development, a causality between the Kdm2b mutation and genesis of ASD/ID-like phenotypes in mice, and potential molecular mechanisms linking the function of KDM2B-PRC1 in transcriptional regulation and NSC senescence to the12q24.31 microdeletion-associated ASD/ID.
15

Effects of early life adversity on meningeal mast cells and proinflammatory gene expression in male and female Mus musculus

Natalia Duque‐Wilckens et al.Sep 17, 2021
ABSTRACT Exposure to early life adversity (ELA) in the form of physical and/or psychological abuse or neglect increases the risk of developing psychiatric and inflammatory disorders later in life. It has been hypothesized that exposure to ELA results in persistent, low grade inflammation that leads to increased disease susceptibility by amplifying the crosstalk between stress-processing brain networks and the immune system, but the mechanisms remain largely unexplored. The meninges, a layer of three overlapping membranes that surround the central nervous system (CNS)- duramater, arachnoid, and piamater – possess unique features that allow them to play a key role in coordinating immune trafficking between the brain and the peripheral immune system. These include a network of lymphatic vessels that carry cerebrospinal fluid from the brain to the deep cervical lymph nodes, fenestrated blood vessels that allow the passage of molecules from blood to the CNS, and a rich population of resident mast cells, master regulators of the immune system. Using a mouse model of ELA consisting of neonatal maternal separation plus early weaning (NMSEW), we sought to explore the effects of ELA on duramater mast cell histology and expression of inflammatory markers in male and female C57Bl/6 mice. We found that mast cell number, activation level, and relative expression of pseudopodia differ across duramater regions, and that NMSEW exerts region-specific effects on mast cells in males and females. Using gene expression analyses, we next found that NMSEW increases the expression of inflammatory markers in the duramater of females but not males, and that this is prevented by pharmacological inhibition of mast cells with ketotifen. Together, our results show that ELA drives sex-specific, long-lasting effects on the duramater mast cell population and immune-related gene expression, suggesting that the long-lasting effects of ELA on disease susceptibility could be partly mediated by meningeal function.
0

Early life adversity promotes gastrointestinal dysfunction through a sex-dependent phenotypic switch in enteric glia

Jacques Gonzalès et al.Jun 3, 2024
Abstract Irritable bowel syndrome and related disorders of gut-brain interaction (DGBI) are common and exhibit a complex, poorly understood etiology that manifests as abnormal gut motility and pain. Risk factors such as biological sex, stressors during critical periods, and inflammation are thought to influence DGBI vulnerability by reprogramming gut-brain circuits, but the specific cells affected are unclear. Here, we used a model of early life stress to understand cellular mechanisms in the gut that produce DGBIs. Our findings identify enteric glia as a key cellular substrate in which stress and biological sex converge to dictate DGBI susceptibility. Enteric glia exhibit sexual dimorphism in genes and functions related to cellular communication, inflammation, and disease susceptibility. Experiencing early life stress has sex-specific effects on enteric glia that cause a phenotypic switch in male glia toward a phenotype normally observed in females. This phenotypic transformation is followed by physiological changes in the gut, mirroring those observed in DGBI in humans. These effects are mediated, in part, by alterations to glial prostaglandin and endocannabinoid signaling. Together, these data identify enteric glia as a cellular integration site through which DGBI risk factors produce changes in gut physiology and suggest that manipulating glial signaling may represent an attractive target for sex-specific therapeutic strategies in DGBIs.