PD
Pamela DeRosse
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
10
(40% Open Access)
Cited by:
1,337
h-index:
39
/
i10-index:
81
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
16

Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence

Jeanne Savage et al.Jun 25, 2018
+114
S
P
J
Intelligence is highly heritable1 and a major determinant of human health and well-being2. Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence3-7, but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.
16
Citation959
3
Save
0

Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia

Todd Lencz et al.Dec 6, 2007
+5
P
C
T
Evolutionarily significant selective sweeps may result in long stretches of homozygous polymorphisms in individuals from outbred populations. We developed whole-genome homozygosity association (WGHA) methodology to characterize this phenomenon in healthy individuals and to use this genomic feature to identify genetic risk loci for schizophrenia (SCZ). Applying WGHA to 178 SCZ cases and 144 healthy controls genotyped at 500,000 markers, we found that runs of homozygosity (ROHs), ranging in size from 200 kb to 15 mb, were common in unrelated Caucasians. Properties of common ROHs in healthy subjects, including chromosomal location and presence of nonancestral haplotypes, converged with prior reports identifying regions under selective pressure. This interpretation was further supported by analysis of multiethnic HapMap samples genotyped with the same markers. ROHs were significantly more common in SCZ cases, and a set of nine ROHs significantly differentiated cases from controls. Four of these 9 "risk ROHs" contained or neighbored genes associated with SCZ (NOS1AP, ATF2, NSF, and PIK3C3). Several of these risk ROHs were very rare in healthy subjects, suggesting that recessive effects of relatively high penetrance may explain a proportion of the genetic liability for SCZ. Other risk ROHs feature haplotypes that are also common in healthy individuals, possibly indicating a source of balancing selection.
0
Citation368
0
Save
0

Ninety-nine independent genetic loci influencing general cognitive function include genes associated with brain health and structure (N = 280,360)

Gail Davies et al.Aug 17, 2017
+223
E
A
G
General cognitive function is a prominent human trait associated with many important life outcomes 1,2 , including longevity 3 . The substantial heritability of general cognitive function is known to be polygenic, but it has had little explication in terms of the contributing genetic variants 4,5,6 . Here, we combined cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N=280,360; age range = 16 to 102). We found 9,714 genome-wide significant SNPs ( P <5 x 10 −8 ) in 99 independent loci. Most showed clear evidence of functional importance. Among many novel genes associated with general cognitive function were SGCZ , ATXN1 , MAPT , AUTS2 , and P2RY6 . Within the novel genetic loci were variants associated with neurodegenerative disorders, neurodevelopmental disorders, physical and psychiatric illnesses, brain structure, and BMI. Gene-based analyses found 536 genes significantly associated with general cognitive function; many were highly expressed in the brain, and associated with neurogenesis and dendrite gene sets. Genetic association results predicted up to 4% of general cognitive function variance in independent samples. There was significant genetic overlap between general cognitive function and information processing speed, as well as many health variables including longevity.
0
Citation10
0
Save
0

Identifying Nootropic Drug Targets via Large-Scale Cognitive GWAS and Transcriptomics

Max Lam et al.Feb 6, 2020
+74
Y
C
M
Background: Cognitive traits demonstrate significant genetic correlations with many psychiatric disorders and other health-related traits, and many neuropsychiatric and neurodegenerative disorders are marked by cognitive deficits. Therefore, genome-wide association studies (GWAS) of general cognitive ability might suggest potential targets for nootropic drug repurposing. Our previous effort to identify "druggable genes" (i.e., GWAS-identified genes that produce proteins targeted by known small molecules) was modestly powered due to the small cognitive GWAS sample available at the time. Since then, two large cognitive GWAS meta-analyses have reported 148 and 205 genome-wide significant loci, respectively. Additionally, large-scale gene expression databases, derived from post-mortem human brain, have recently been made available for GWAS annotation. Here, we 1) reconcile results from these two cognitive GWAS meta-analyses to further enhance power for locus discovery; 2) employ several complementary transcriptomic methods to identify genes in these loci with variants that are credibly associated with cognition, and 3) further annotate the resulting genes to identify "druggable" targets. Methods: GWAS summary statistics were harmonized and jointly analysed using Multi-Trait Analysis of GWAS [MTAG], which is optimized for handling sample overlaps. Downstream gene identification was carried out using MAGMA, S-PrediXcan/S-TissueXcan Transcriptomic Wide Analysis, and eQTL mapping, as well as more recently developed methods that integrate GWAS and eQTL data via Summary-statistics Mendelian Randomization [SMR] and linkage methods [HEIDI]. Available brain-specific eQTL databases included GTEXv7, BrainEAC, CommonMind, ROSMAP, and PsychENCODE. Intersecting credible genes were then annotated against multiple chemoinformatic databases [DGIdb, KI, and a published review on "druggability"]. Results: Using our meta-analytic data set (N = 373,617) we identified 241 independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. 26 genes were associated with general cognitive ability via SMR, 16 genes via STissueXcan/S-PrediXcan, 47 genes via eQTL mapping, and 68 genes via MAGMA pathway analysis. The use of the HEIDI test permitted the exclusion of candidate genes that may have been artifactually associated to cognition due to linkage, rather than direct causal or indirect pleiotropic effects. Actin and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging on our various transcriptome and pathway analyses, as well as available chemoinformatic databases, we identified 16 putative genes that may suggest drug targets with nootropic properties. Discussion: Results converged on several categories of significant drug targets, including serotonergic and glutamatergic genes, voltage-gated ion channel genes, carbonic anhydrase genes, and phosphodiesterase genes. The current results represent the first efforts to apply a multi-method approach to integrate gene expression and SNP level data to identify credible actionable genes for general cognitive ability.
0

Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways

Max Lam et al.Jan 20, 2019
+71
J
W
M
Liability to schizophrenia is inversely correlated with general cognitive ability at both the phenotypic and genetic level. Paradoxically, a modest but consistent positive genetic correlation has been reported between schizophrenia and educational attainment, despite the strong positive genetic correlation between cognitive ability and educational attainment. Here we leverage published GWAS in cognitive ability, education, and schizophrenia to parse biological mechanisms underlying these results. Association analysis based on subsets (ASSET), a pleiotropic meta-analytic technique, allowed jointly associated loci to be identified and characterized. Specifically, we identified subsets of variants associated in the expected ("Concordant") direction across all three phenotypes (i.e., greater risk for schizophrenia, lower cognitive ability, and lower educational attainment); these were contrasted with variants demonstrating the counterintuitive ("Discordant") relationship between education and schizophrenia (i.e., greater risk for schizophrenia and higher educational attainment). ASSET analysis revealed 235 independent loci associated with cognitive ability, education and/or schizophrenia at p<5x10^-8. Pleiotropic analysis successfully identified more than 100 loci that were not significant in the input GWASs, and many of these have been validated by larger, more recent single-phenotype GWAS. Leveraging the joint genetic correlations of cognitive ability, education, and schizophrenia, we were able to dissociate two distinct biological mechanisms: early neurodevelopmental pathways that characterize concordant allelic variation, and adulthood synaptic pruning pathways that were linked to the paradoxical positive genetic association between education and schizophrenia. Further, genetic correlation analyses revealed that these mechanisms contribute not only to the etiopathogenesis of schizophrenia but also to the broader biological dimensions that are implicated in both general health outcomes and psychiatric illness.
0

Decoding Early Psychoses: Unraveling Stable Microstructural Features Associated with Psychopathology Across Independent Cohorts

Han Wang et al.May 12, 2024
+13
C
H
H
Abstract Background Early Psychosis patients (EP, within 3 years after psychosis onset) show significant variability, making outcome predictions challenging. Currently, little evidence exists for stable relationships between neural microstructural properties and symptom profiles across EP diagnoses, limiting the development of early interventions. Methods A data-driven approach, Partial Least Squares (PLS) correlation, was used across two independent datasets to examine multivariate relationships between white matter (WM) properties and symptomatology, to identify stable and generalizable signatures in EP. The primary cohort included EP patients from the Human Connectome Project-Early Psychosis (n=124). The replication cohort included EP patients from the Feinstein Institute for Medical Research (n=78). Both samples included individuals with schizophrenia, schizoaffective disorder, and psychotic mood disorders. Results In both cohorts, a significant latent component (LC) corresponded to a symptom profile combining negative symptoms, primarily diminished expression, with specific somatic symptoms. Both LCs captured comprehensive features of WM disruption, primarily a combination of subcortical and frontal association fibers. Strikingly, the PLS model trained on the primary cohort accurately predicted microstructural features and symptoms in the replication cohort. Findings were not driven by diagnosis, medication, or substance use. Conclusions This data-driven transdiagnostic approach revealed a stable and replicable neurobiological signature of microstructural WM alterations in EP, across diagnoses and datasets, showing a strong covariance of these alterations with a unique profile of negative and somatic symptoms. This finding suggests the clinical utility of applying data-driven approaches to reveal symptom domains that share neurobiological underpinnings.
0

Large-Scale cognitive GWAS Meta-analysis Reveals Tissue-Specific Neural Expression and Potential Nootopic Drug Targets

Max Lam et al.Aug 16, 2017
+70
I
E
M
Neurocognitive ability is a fundamental readout of brain function, and cognitive deficits are a critical component of neuropsychiatric disorders, yet neurocognition is poorly understood at the molecular level. In the present report, we present the largest genome-wide association studies (GWAS) of cognitive ability to date (N=107,207), and further enhance signal by combining results with a large-scale GWAS of educational attainment. We identified 70 independent genomic loci associated with cognitive ability, 34 of which were novel. A total of 350 genes were implicated, and this list showed significant enrichment for genes associated with Mendelian disorders with an intellectual disability phenotype. Competitive pathway analysis of gene results implicated the biological process of neurogenesis, as well as the gene targets of two pharmacologic agents: cinnarizine, a T-type calcium channel blocker; and LY97241, a potassium channel inhibitor. Transcriptome-wide analysis revealed that the implicated genes were strongly expressed in neurons, but not astrocytes or oligodendrocytes, and were more strongly associated with fetal brain expression than adult brain expression. Several tissue-specific gene expression relationships to cognitive ability were observed (for example, DAG1 levels in the hippocampus). Finally, we report novel genetic correlations between cognitive ability and disparate phenotypes such as maternal age at first birth and number of children, as well as several autoimmune disorders.
0

GWAS meta-analysis (N=279,930) identifies new genes and functional links to intelligence

Jeanne Savage et al.Sep 6, 2017
+123
D
E
J
Intelligence is highly heritable and a major determinant of human health and well-being. Recent genome-wide meta-analyses have identified 24 genomic loci linked to intelligence, but much about its genetic underpinnings remains to be discovered. Here, we present the largest genetic association study of intelligence to date (N=279,930), identifying 206 genomic loci (191 novel) and implicating 1,041 genes (963 novel) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and identify 89 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain and specifically in striatal medium spiny neurons and cortical and hippocampal pyramidal neurons. Gene-set analyses implicate pathways related to neurogenesis, neuron differentiation and synaptic structure. We confirm previous strong genetic correlations with several neuropsychiatric disorders, and Mendelian Randomization results suggest protective effects of intelligence for Alzheimer's dementia and ADHD, and bidirectional causation with strong pleiotropy for schizophrenia. These results are a major step forward in understanding the neurobiology of intelligence as well as genetically associated neuropsychiatric traits.
0

Striatal volume and functional connectivity predict weight gain in early-phase psychosis

Philipp Homan et al.Dec 19, 2018
+5
C
M
P
Background: Second-generation antipsychotic drugs (SGAs) are essential in the treatment of psychotic disorders, but are well-known for inducing substantial weight gain and obesity. Critically, weight gain may reduce life expectancy for up to 20-30 years in patients with psychotic disorders, and prognostic biomarkers are generally lacking. The dorsal striatum, rich in dopamine D2 receptors which are antagonized by antipsychotic medications, plays a key role in the human reward system and in appetite regulation, suggesting that altered dopamine activity in the striatal reward circuitry may be responsible for increased food craving and resultant weight gain. Methods: Here, we measured striatal volume and striatal resting state functional connectivity at baseline, and weight gain over the course of 12 weeks of antipsychotic treatment in 81 patients with early-phase psychosis. We also included a sample of 58 healthy controls. Weight measurements were completed at baseline, and then weekly for 4 weeks, and every 2 weeks until week 12. We used linear mixed models to compute individual weight gain trajectories. Striatal volume and whole-brain striatal connectivity were then calculated for each subject, and used to assess the relationship between striatal structure and function and individual weight gain in multiple regression models. Outcomes: Patients had similar baseline weights and body mass indices (BMI) compared to healthy controls. There was no evidence that prior drug exposure or duration of untreated psychosis correlated with baseline BMI. Higher left putamen volume and lower frontopolar connectivity predicted magnitude of weight gain in patients, and these effects multiplied when the structure-function interaction was considered. Interpretation: These results provide evidence for a synergistic effect of striatal structure and function on antipsychotics-induced weight gain. Lower fronto-striatal connectivity, implicated in less optimal long-term decision making, was associated with more weight gain, and this relationship was stronger for higher compared to lower left putamen volumes.
0

Decoding Early Psychoses: Unraveling Stable Microstructural Features Associated with Psychopathology Across Independent Cohorts

Carrie Bearden et al.Jun 1, 2024
+6
C
Z
C
Early Psychosis patients (EP, within 3 years after psychosis onset) show significant variability, making outcome predictions challenging. Currently, little evidence exists for stable relationships between neural microstructural properties and symptom profiles across EP diagnoses, limiting the development of early interventions.