QS
Qi Shen
Author with expertise in DNA Nanotechnology and Bioanalytical Applications
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
37
h-index:
16
/
i10-index:
26
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
11

A DNA-origami nuclear pore mimic reveals nuclear entry mechanisms of HIV-1 capsid

Qi Shen et al.Aug 11, 2020
Summary The capsid of human immunodeficiency virus 1 (HIV-1) plays a pivotal role in viral nuclear import, but the mechanism by which the viral core passages the nuclear pore complex (NPC) is poorly understood. Here, we use DNA-origami mimics of the NPC, termed NuPODs (NucleoPorins Organized by DNA), to reveal the mechanistic underpinnings of HIV-1 capsid nuclear entry. We found that trimeric interface formed via three capsid protein hexamers is targeted by a triple-arginine (RRR) motif but not the canonical phenylalanine-glycine (FG) motif of NUP153. As NUP153 is located on the nuclear face of the NPC, this result implies that the assembled capsid must cross the NPC in vivo . This hypothesis is corroborated by our observations of tubular capsid assemblies penetrating through NUP153 NuPODs. NUP153 prefers to bind highly curved capsid assemblies including those found at the tips of viral cores, thereby facilitating capsid insertion into the NPC. Furthermore, a balance of capsid stabilization by NUP153 and deformation by CPSF6, along with other cellular factors, may allow for the intact capsid to pass NPCs of various sizes. The NuPOD system serves as a unique tool for unraveling the previously elusive mechanisms of nuclear import of HIV-1 and other viruses.
11
Citation6
0
Save
0

Quantification of biomolecular dynamics inside real and synthetic nuclear pore complexes using time-resolved atomic force microscopy

George Stanley et al.Mar 28, 2019
Over the past decades, atomic force microscopy (AFM) has emerged as an increasingly powerful tool to study the dynamics of biomolecules at nanometre length scales. However, the more stochastic the nature of such biomolecular dynamics, the harder it becomes to distinguish them from AFM measurement noise. Rapid, stochastic dynamics are inherent to biological systems comprising intrinsically disordered proteins. One role of such proteins is in the formation of the transport barrier of the nuclear pore complex (NPC): the selective gateway for macromolecular traffic entering or exiting the nucleus. Here, we use AFM to observe the dynamics of intrinsically disordered proteins from two systems: the transport barrier of native NPCs, and the transport barrier of a mimetic NPC made using a DNA origami scaffold. Analysing data recorded with 50-200 ms temporal resolution, we highlight the importance of drift correction and appropriate baseline measurements in such experiments. In addition, we describe an auto-correlation analysis to quantify time scales of observed dynamics and to assess their veracity - an analysis protocol that lends itself to the quantification of stochastic fluctuations in other biomolecular systems. The results reveal the surprisingly slow rate of stochastic, collective transitions inside mimetic NPCs, highlighting the importance of FG-nup cohesive interactions.
0

Channel width modulates the permeability of DNA origami based nuclear pore mimics

Qingzhou Feng et al.May 12, 2024
Nucleoporins (nups) in the central channel of nuclear pore complexes (NPCs) form a selective barrier that suppresses the diffusion of most macromolecules while enabling rapid transport of nuclear transport receptors (NTRs) with bound cargos. The complex molecular interactions between nups and NTRs have been thought to underlie the gatekeeping function of the NPC. Recent studies have shown considerable variation in NPC diameter but how altering NPC diameter might impact the selective barrier properties remains unclear. Here, we build DNA nanopores with programmable diameters and nup arrangement to mimic NPCs of different diameters. We use hepatitis B virus (HBV) capsids as a model for large-size cargos. We find that Nup62 proteins form a dynamic cross-channel meshwork impermeable to HBV capsids when grafted on the interior of 60-nm wide nanopores but not in 79-nm pores, where Nup62 cluster locally. Furthermore, importing substantially changes the dynamics of Nup62 assemblies and facilitates the passage of HBV capsids through NPC mimics containing Nup62 and Nup153. Our study shows the transport channel width is critical to the permeability of nup barriers and underscores the role of NTRs in dynamically remodeling nup assemblies and mediating the nuclear entry of viruses.