KO
Kassandra Ori-McKenney
Author with expertise in Regulation and Function of Microtubules in Cell Division
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(71% Open Access)
Cited by:
1,228
h-index:
19
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Reconstitution of Kinesin-1 Activation

Kyoko Chiba et al.Mar 12, 2021
Abstract Autoinhibition is an important regulatory mechanism for cytoskeletal motor proteins. Kinesin-1 (kinesin hereafter), the ubiquitous plus-end directed microtubule motor, is thought to be controlled by a complicated autoinihibition mechanism, but the molecular details remain unclear. Conformational changes mediated by intramolecular interactions between the C-terminal tail and N-terminal motor domains of the kinesin heavy chain (KHC) are proposed to be one facet of motor regulation. The dimeric KHC also binds two copies of the kinesin light chains (KLCs), which have been implicated in both autoinhibition and cargo-dependent activation of the tetrameric motor complex, although the precise mechanisms remain opaque. Using in vitro reconstitution, we show that the KLC strongly inhibits the kinesin-microtubule interaction via an independent mechanism from the tail-motor interaction within KHC. Kinesin cargo-adaptor proteins that bind KLC activated processive movement of the kinesin tetramer but the landing rate of these activated complexes remained low. The addition of MAP7, which specifically binds to the KHC, strongly enhanced activated motor motility by dramatically increasing the landing rate and processivity of the activated kinesin motors. Our results support a model whereby the activity of the kinesin tetramer is regulated by independent tail- and KLC-based inhibition mechanisms, and that cargo-adaptor binding to the KLC directly releases both of these inhibitions. However, we find that a third component, a non-motor MAP is required for robust activity of the activated motor. Thus, human kinesin activity is regulated by a two-factor mechanism comprised of intramolecular allosteric regulation, as well as intermolecular kinesin-adaptor and kinesin-MAP interactions.
6
Citation8
0
Save
1

Structural stability of SARS-CoV-2 degrades with temperature

Anu Sharma et al.Oct 14, 2020
Abstract SARS-CoV-2 is a novel coronavirus which has caused the COVID-19 pandemic. Other known coronaviruses show a strong pattern of seasonality, with the infection cases in humans being more prominent in winter. Although several plausible origins of such seasonal variability have been proposed, its mechanism is unclear. SARS-CoV-2 is transmitted via airborne droplets ejected from the upper respiratory tract of the infected individuals. It has been reported that SARS-CoV-2 can remain infectious for hours on surfaces. As such, the stability of viral particles both in liquid droplets as well as dried on surfaces is essential for infectivity. Here we have used atomic force microscopy to examine the structural stability of individual SARS-CoV-2 virus like particles at different temperatures. We demonstrate that even a mild temperature increase, commensurate with what is common for summer warming, leads to dramatic disruption of viral structural stability, especially when the heat is applied in the dry state. This is consistent with other existing non-mechanistic studies of viral infectivity, provides a single particle perspective on viral seasonality, and strengthens the case for a resurgence of COVID-19 in winter. Statement of Scientific Significance The economic and public health impact of the COVID-19 pandemic are very significant. However scientific information needed to underpin policy decisions are limited partly due to novelty of the SARS-CoV-2 pathogen. There is therefore an urgent need for mechanistic studies of both COVID-19 disease and the SARS-CoV-2 virus. We show that individual virus particles suffer structural destabilization at relatively mild but elevated temperatures. Our nanoscale results are consistent with recent observations at larger scales. Our work strengthens the case for COVID-19 resurgence in winter.
1
Paper
Citation6
0
Save
3

Autoregulatory control of microtubule binding in the oncogene, doublecortin-like kinase 1

Melissa Rogers et al.Jun 14, 2020
Abstract The microtubule-associated protein (MAP), doublecortin-like kinase 1 (DCLK1), is highly expressed in a range of cancers and is a prominent therapeutic target for the development of kinase inhibitors. However, the physiological roles of its kinase activity and how DCLK1 kinase activity is regulated remain elusive. Here we employ in vitro reconstitution with purified proteins to analyze the role of DCLK1 kinase activity in regulating microtubule binding. We find that DCLK1 autophosphorylates a single residue within its C-terminal tail to restrict its kinase activity and prevent aberrant hyperphosphorylation within its microtubule-binding domain. Removal of the C-terminal tail or mutation of this residue causes an increase in phosphorylation largely within the doublecortin 2 (DC2) domain, which dramatically reduces the microtubule affinity of DCLK1. Therefore, autophosphorylation at specific sites within DCLK1 have diametric effects on the molecule’s ability to associate with microtubules. Overall, our results suggest a mechanism by which DCLK1 modulates its own kinase activity to tune its microtubule binding affinity, providing molecular insights into a unique form of autoregulatory control over microtubule binding activity within the broader family of MAPs. These results provide useful molecular insights for future therapeutic efforts related to DCLK1’s role in cancer development and progression.
3
Citation1
0
Save
1

Microtubule Lattice Spacing Governs Cohesive Envelope Formation of Tau Family Proteins

Valerie Siahaan et al.Nov 10, 2021
Abstract Tau is an intrinsically-disordered microtubule-associated protein (MAP) implicated in neurodegenerative disease. On microtubules, tau molecules segregate into two kinetically distinct phases, consisting of either independently diffusing molecules or interacting molecules that form cohesive “envelopes” around microtubules. Envelopes differentially regulate lattice accessibility for other MAPs, but the mechanism of envelope formation remains unclear. Here, we find that tau envelopes form cooperatively, locally altering the spacing of tubulin dimers within the microtubule lattice. Envelope formation compacted the underlying lattice, whereas lattice extension induced tau-envelope disassembly. Investigating other members of the tau-MAP family, we find MAP2 similarly forms envelopes governed by lattice-spacing, whereas MAP4 cannot. Envelopes differentially biased motor protein movement, suggesting that tau family members could spatially divide the microtubule surface into functionally distinct segments. We conclude that the interdependent allostery between lattice-spacing and cooperative envelope formation provides the molecular basis for spatial regulation of microtubule-based processes by tau and MAP2.
1
Citation1
0
Save
1

Macromolecular Crowding Tailors the Microtubule Cytoskeleton Through Tubulin Modifications and Microtubule-Associated Proteins

Yusheng Shen et al.Jun 14, 2023
Cells remodel their cytoskeletal networks to adapt to their environment. Here, we analyze the mechanisms utilized by the cell to tailor its microtubule landscape in response to changes in osmolarity that alter macromolecular crowding. By integrating live cell imaging, ex vivo enzymatic assays, and in vitro reconstitution, we probe the impact of acute perturbations in cytoplasmic density on microtubule-associated proteins (MAPs) and tubulin posttranslational modifications (PTMs), unraveling the molecular underpinnings of cellular adaptation via the microtubule cytoskeleton. We find that cells respond to fluctuations in cytoplasmic density by modulating microtubule acetylation, detyrosination, or MAP7 association, without differentially affecting polyglutamylation, tyrosination, or MAP4 association. These MAP-PTM combinations alter intracellular cargo transport, enabling the cell to respond to osmotic challenges. We further dissect the molecular mechanisms governing tubulin PTM specification, and find that MAP7 promotes acetylation by biasing the conformation of the microtubule lattice, and directly inhibits detyrosination. Acetylation and detyrosination can therefore be decoupled and utilized for distinct cellular purposes. Our data reveal that the MAP code dictates the tubulin code, resulting in remodeling of the microtubule cytoskeleton and alteration of intracellular transport as an integrated mechanism of cellular adaptation.
1
Citation1
0
Save
0

Active Microtubule-Actin Crosstalk Mediated by a Nesprin-2G-Kinesin Complex

Natalie Sahabandu et al.May 15, 2024
Nesprins are integral membrane proteins that physically couple the nucleus and cytoskeleton. Nesprin-2 Giant (N2G) stands out for its extensive cytoplasmic domain, which contains tandem N-terminal actin-binding calponin-homology domains followed by >50 spectrin repeats and a C-terminal outer nuclear membrane-spanning KASH domain. N2G’s KASH domain interacts with the inner nuclear membrane, lamina-binding SUN proteins within the perinuclear space, forming a linker of nucleoskeleton and cytoskeleton (LINC) complex. Additionally, N2G contains a conserved W-acidic LEWD motif that enables the direct interaction with kinesin-1’s light chain, indicating N2G’s involvement with both actin and microtubules. The absence of N2G leads to embryonic lethality in mice, while cellular assays highlight N2G’s role in nuclear positioning across diverse biological contexts. However, the precise mechanisms underlying N2G-mediated nucleocytoskeletal coupling remain unclear. Here we study N2G’s interactions with F-actin and kinesin-1, revealing its functions as an F-actin bundler, a kinesin-1-activating adapter, and a mediator of active cytoskeletal crosstalk. Along with MAP7 proteins, N2G directly links active kinesin-1 motors to F-actin, facilitating actin transport along microtubule tracks. These findings shed light on N2G’s dynamic role as a crosslinker between actin and microtubule cytoskeletons, offering insights into nuclear movement, a fundamental cellular process.
0

CRMP/UNC-33 maintains neuronal microtubule arrays by promoting individual microtubule rescue

Xing Liang et al.Jun 1, 2024
Summary Microtubules (MTs) are intrinsically dynamic polymers. In neurons, staggered individual microtubules form stable, polarized acentrosomal MT arrays spanning the axon and dendrite to support long-distance intracellular transport. How the stability and polarity of these arrays are maintained when individual MTs remain highly dynamic is still an open question. Here we visualize MT arrays in vivo in C. elegans neurons with single microtubule resolution. We find that the CRMP family homolog, UNC-33, is essential for the stability and polarity of MT arrays in neurites. In unc-33 mutants, MTs exhibit dramatically reduced rescue after catastrophe, develop gaps in coverage, and lose their polarity, leading to trafficking defects. UNC-33 is stably anchored on the cortical cytoskeleton and forms patch-like structures along the dendritic shaft. These discrete and stable UNC-33 patches concentrate free tubulins and correlate with MT rescue sites. In vitro , purified UNC-33 preferentially associates with MT tips and increases MT rescue frequency. Together, we propose that UNC-33 functions as a microtubule-associated protein (MAP) to promote individual MT rescue locally. Through this activity, UNC-33 prevents the loss of individual MTs, thereby maintaining the coverage and polarity of MT arrays throughout the lifetime of neurons.
Load More