CF
Carol Franz
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
28
(64% Open Access)
Cited by:
3,069
h-index:
58
/
i10-index:
190
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Distinct Genetic Influences on Cortical Surface Area and Cortical Thickness

Matthew Panizzon et al.Mar 18, 2009
+13
L
C
M
Neuroimaging studies examining the effects of aging and neuropsychiatric disorders on the cerebral cortex have largely been based on measures of cortical volume. Given that cortical volume is a product of thickness and surface area, it is plausible that measures of volume capture at least 2 distinct sets of genetic influences. The present study aims to examine the genetic relationships between measures of cortical surface area and thickness. Participants were men in the Vietnam Era Twin Study of Aging (110 monozygotic pairs and 92 dizygotic pairs). Mean age was 55.8 years (range: 51–59). Bivariate twin analyses were utilized in order to estimate the heritability of cortical surface area and thickness, as well as their degree of genetic overlap. Total cortical surface area and average cortical thickness were both highly heritable (0.89 and 0.81, respectively) but were essentially unrelated genetically (genetic correlation = 0.08). This pattern was similar at the lobar and regional levels of analysis. These results demonstrate that cortical volume measures combine at least 2 distinct sources of genetic influences. We conclude that using volume in a genetically informative study, or as an endophenotype for a disorder, may confound the underlying genetic architecture of brain structure.
0
Citation1,212
0
Save
1

Brain charts for the human lifespan

Richard Bethlehem et al.Apr 6, 2022
+91
S
J
R
Abstract Over the past few decades, neuroimaging has become a ubiquitous tool in basic research and clinical studies of the human brain. However, no reference standards currently exist to quantify individual differences in neuroimaging metrics over time, in contrast to growth charts for anthropometric traits such as height and weight 1 . Here we assemble an interactive open resource to benchmark brain morphology derived from any current or future sample of MRI data ( http://www.brainchart.io/ ). With the goal of basing these reference charts on the largest and most inclusive dataset available, acknowledging limitations due to known biases of MRI studies relative to the diversity of the global population, we aggregated 123,984 MRI scans, across more than 100 primary studies, from 101,457 human participants between 115 days post-conception to 100 years of age. MRI metrics were quantified by centile scores, relative to non-linear trajectories 2 of brain structural changes, and rates of change, over the lifespan. Brain charts identified previously unreported neurodevelopmental milestones 3 , showed high stability of individuals across longitudinal assessments, and demonstrated robustness to technical and methodological differences between primary studies. Centile scores showed increased heritability compared with non-centiled MRI phenotypes, and provided a standardized measure of atypical brain structure that revealed patterns of neuroanatomical variation across neurological and psychiatric disorders. In summary, brain charts are an essential step towards robust quantification of individual variation benchmarked to normative trajectories in multiple, commonly used neuroimaging phenotypes.
1
Citation824
0
Save
0

Influence of Patients’ Requests for Direct-to-Consumer Advertised Antidepressants

Richard Kravitz et al.Apr 26, 2005
+5
M
R
R
Direct-to-consumer (DTC) advertising of prescription drugs in the United States is both ubiquitous and controversial. Critics charge that it leads to overprescribing, while proponents counter that it helps avert underuse of effective treatments, especially for conditions that are poorly recognized or stigmatized.To ascertain the effects of patients' DTC-related requests on physicians' initial treatment decisions in patients with depressive symptoms.Randomized trial using standardized patients (SPs). Six SP roles were created by crossing 2 conditions (major depression or adjustment disorder with depressed mood) with 3 request types (brand-specific, general, or none).Offices of primary care physicians in Sacramento, Calif; San Francisco, Calif; and Rochester, NY, between May 2003 and May 2004.One hundred fifty-two family physicians and general internists recruited from solo and group practices and health maintenance organizations; cooperation rates ranged from 53% to 61%.The SPs were randomly assigned to make 298 unannounced visits, with assignments constrained so physicians saw 1 SP with major depression and 1 with adjustment disorder. The SPs made a brand-specific drug request, a general drug request, or no request (control condition) in approximately one third of visits.Data on prescribing, mental health referral, and primary care follow-up obtained from SP written reports, visit audiorecordings, chart review, and analysis of written prescriptions and drug samples. The effects of request type on prescribing were evaluated using contingency tables and confirmed in generalized linear mixed models that accounted for clustering and adjusted for site, physician, and visit characteristics.Standardized patient role fidelity was excellent, and the suspicion rate that physicians had seen an SP was 13%. In major depression, rates of antidepressant prescribing were 53%, 76%, and 31% for SPs making brand-specific, general, and no requests, respectively (P<.001). In adjustment disorder, antidepressant prescribing rates were 55%, 39%, and 10%, respectively (P<.001). The results were confirmed in multivariate models. Minimally acceptable initial care (any combination of an antidepressant, mental health referral, or follow-up within 2 weeks) was offered to 98% of SPs in the major depression role making a general request, 90% of those making a brand-specific request, and 56% of those making no request (P<.001).Patients' requests have a profound effect on physician prescribing in major depression and adjustment disorder. Direct-to-consumer advertising may have competing effects on quality, potentially both averting underuse and promoting overuse.
0

Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders

Min‐Tzu Lo et al.Dec 5, 2016
+19
J
D
M
Chi-Hua Chen and colleagues report a GWAS for five personality traits and identify four loci associated with extraversion and two associated with neuroticism at genome-wide significance. They find that the five personality traits are genetically correlated and identify genetic correlations between personality traits and psychiatric disorders. Personality is influenced by genetic and environmental factors1 and associated with mental health. However, the underlying genetic determinants are largely unknown. We identified six genetic loci, including five novel loci2,3, significantly associated with personality traits in a meta-analysis of genome-wide association studies (N = 123,132–260,861). Of these genome-wide significant loci, extraversion was associated with variants in WSCD2 and near PCDH15, and neuroticism with variants on chromosome 8p23.1 and in L3MBTL2. We performed a principal component analysis to extract major dimensions underlying genetic variations among five personality traits and six psychiatric disorders (N = 5,422–18,759). The first genetic dimension separated personality traits and psychiatric disorders, except that neuroticism and openness to experience were clustered with the disorders. High genetic correlations were found between extraversion and attention-deficit–hyperactivity disorder (ADHD) and between openness and schizophrenia and bipolar disorder. The second genetic dimension was closely aligned with extraversion–introversion and grouped neuroticism with internalizing psychopathology (e.g., depression or anxiety).
0
Citation405
0
Save
0

Genetic Determinants of Cortical Structure (Thickness, Surface Area and Volumes) among Disease Free Adults in the CHARGE Consortium

Ivana Kolčić et al.Sep 9, 2018
+385
H
E
I
Abstract Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,822 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 161 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.
0
Citation24
0
Save
0

Extensive memory testing improves prediction of progression to MCI in late middle age

Daniel Gustavson et al.Mar 21, 2019
+7
M
J
D
Abstract INTRODUCTION Predicting risk for Alzheimer’s disease when most people are likely still biomarker negative would aid earlier identification. We hypothesized that combining multiple memory tests and scores in middle-aged adults would provide useful, and non-invasive, prediction of 6-year progression to MCI. METHODS We examined 849 men who were cognitively normal at baseline (mean age=55.69±2.45). RESULTS California Verbal Learning Test learning trials was the best individual predictor of amnestic MCI (OR=4.75). A latent factor incorporating 7 measures across 3 memory tests provided much stronger prediction (OR=9.88). This compared favorably with biomarker-based prediction in a study of much older adults. DISCUSSION Neuropsychological tests are sensitive and early indicators of Alzheimer’s disease risk at an age when few individuals are likely to have yet become biomarker positive. Single best measures may appear time- and cost-effective, but 30 additional minutes of testing, and use of multiple scores within tests, provides substantially improved prediction
0
Citation6
0
Save
16

Bridging Big Data: Procedures for Combining Non-equivalent Cognitive Measures from the ENIGMA Consortium

Eamonn Kennedy et al.Jan 19, 2023
+141
C
M
E
Investigators in neuroscience have turned to Big Data to address replication and reliability issues by increasing sample sizes, statistical power, and representativeness of data. These efforts unveil new questions about integrating data arising from distinct sources and instruments. We focus on the most frequently assessed cognitive domain - memory testing - and demonstrate a process for reliable data harmonization across three common measures. We aggregated global raw data from 53 studies totaling N = 10,505 individuals. A mega-analysis was conducted using empirical bayes harmonization to remove site effects, followed by linear models adjusting for common covariates. A continuous item response theory (IRT) model estimated each individual's latent verbal learning ability while accounting for item difficulties. Harmonization significantly reduced inter-site variance while preserving covariate effects, and our conversion tool is freely available online. This demonstrates that large-scale data sharing and harmonization initiatives can address reproducibility and integration challenges across the behavioral sciences.
1

The genetic etiology of longitudinal measures of predicted brain ageing in a population-based sample of mid to late-age males

Nathan Gillespie et al.Aug 6, 2021
+17
J
A
N
Despite their increasing application, the genetic and environmental etiology of global predicted brain ageing (PBA) indices is unknown. Likewise, the degree to which genetic influences in PBA are longitudinally stable and how PBA changes over time are also unknown. We analyzed data from 734 men from the Vietnam Era Twin Study of Aging with repeated MRI assessments between the ages 52 to 72 years. Biometrical genetic analyses revealed significant and highly correlated estimates of additive genetic heritability ranging from 59% to 75%. Multivariate longitudinal modelling revealed that covariation between PBA at different timepoints could be explained by a single latent factor with 73% heritability. Our results suggest that genetic influences on PBA are detectable in midlife or earlier, are longitudinally very stable, and are largely explained by common genetic influences.
1
Citation2
0
Save
0

ENIGMA-Chronic Pain: a worldwide initiative to identify brain correlates of chronic pain

Yann Quidé et al.Jul 26, 2024
+81
T
K
Y
Chronic pain has a profound societal burden, affecting 20% to 30% of the world population,10,13,14,47 and is associated with high rates of comorbid mental health conditions, especially depression and anxiety.15 Women and people of increasing age are disproportionately affected by chronic pain,14,32 and while there are pharmacological and nonpharmacological treatments available, many individuals still do not benefit from these treatments.11,16,19,31,35,45 One significant challenge in providing effective pain-relieving treatments arises from our incomplete understanding of the mechanisms underlying the development and maintenance of chronic pain. Some of these mechanisms include changes in brain morphology and function.2,8,12,18,25,28,37 One approach to better understand these mechanisms is to combine neuroimaging studies of diverse populations with the purpose of identifying common phenotypes and neuroimaging correlates. Phenotyping to explore both similarities and heterogeneity across pain conditions is necessary to inform disease prognosis and elucidate common treatment targets. To this endeavor, the Enhancing Neuroimaging and Genetics through Meta-Analysis (ENIGMA)-Chronic Pain working group was formed in November 2022. ENIGMA-Chronic Pain has since welcomed over 70 pain investigators from all over the world, to pool and integrate existing neuroimaging and clinical data from approximately 2000 chronic pain and 4000 pain-free healthy individuals, from over 30 international and independently collected datasets. 1. What is ENIGMA? What are the aims of the ENIGMA-Chronic Pain Working Group? Founded in 2009, the aim of the ENIGMA Consortium is to address the growing replication problems in neuroimaging research. ENIGMA is a global collaboration of more than 2000 scientists from over 45 countries studying the human brain, in health and over 30 neurological, mental, and neurogenetic diseases.42 ENIGMA coordinates large-scale neuroimaging analyses, pooling existing datasets from around the world,6,34,39 actively coordinating the reuse of data, while accommodating data privacy safeguards, bringing rich resources and expertise to answer fundamental questions related to major brain disorders. By integrating available existing datasets and building on the growing infrastructure of the ENIGMA consortium, ENIGMA-Chronic Pain provides a platform and a resource to the chronic pain community allowing for data findability, accessibility, interoperability, and44 reusability—all vital aspects of reproducible research. Using a cost-effective and innovative global approach by merging the resources and data of leading chronic pain neuroimaging centers, ENIGMA-Chronic Pain offers a unique opportunity to obtain detailed, reproducible, and reliable data on brain mechanisms associated with chronic pain. ENIGMA-Chronic Pain integrates single studies of specific chronic pain conditions, including precursor data repositories (eg, OpenPain), and larger population-based biobanks with recorded indices of chronic pain (eg, UK Biobank).8 Recent advances in machine learning and artificial intelligence technologies also offer new and powerful ways to analyze these existing neuroimaging data. Through a worldwide collaboration of pain researchers and clinicians, ENIGMA-Chronic Pain will aim to (1) determine common and pain condition-specific brain correlates of chronic pain through multimodal neuroimaging (relative to pain-free healthy controls); (2) examine the interactions between chronic pain and comorbid mental health conditions on brain morphology and function; and (3) identify the roles of key sociodemographic factors and medication on brain morphology and function. 2. Determine common and pain condition-specific brain correlates of chronic pain through multimodal neuroimaging ENIGMA-Chronic Pain combines smaller datasets from heterogeneous chronic pain conditions. This approach maximizes the power of planned analyses and is necessary to identify brain correlates shared across chronic pain conditions. Through planned follow-up analyses on pooled datasets of similar pain types, pain locations across the body, or specific diagnoses, ENIGMA-Chronic Pain will identify correlates specific to the studied conditions at a larger scale than has previously been possible. ENIGMA-Chronic Pain will begin with examining brain topography of chronic pain by using common processing pipelines and software such as FreeSurfer for T1-weighted structural magnetic resonance imaging scans (sMRI)17,20,21 or Functional MRI of the Brain Software Library (FSL) for diffusion MRI (dMRI).23,38 Further to brain-wide region-of-interest analyses, investigation of multimodal correlates and brain networks of chronic pain will be conducted using whole-brain analyses, including standardized indices of functional connectivity from resting-state functional MRI (rs-fMRI) processed with ENIGMA's HALFpipe,43 voxel-based morphometry, and machine learning approaches to fuse multimodal features from sMRI, dMRI, and rs-fMRI to make diagnostic classification or prediction of a future clinical state. 3. Examine the interactions between chronic pain and comorbid mental health conditions on brain morphology and function Chronic pain is often accompanied by comorbid mental health conditions that can prevent treatment success.46 For example, 5% to 85% of individuals with chronic pain (depending on the study populations and settings) experience depression.1,9 The ENIGMA Consortium has extensively investigated the detailed brain and genetic markers of most common mental health conditions and reported alterations in brain regions similar to those commonly reported in smaller chronic pain studies.4,36 Evidence for shared or specific brain mechanisms between chronic pain and depression and anxiety is now growing,33,40,49,50 but no definite conclusion can be drawn from these smaller studies. Using advanced statistical models, our unique sample size, and availability of indices of comorbid mental health conditions, the pooled dataset from ENIGMA-Chronic Pain will aim to disentangle the fine morphological and functional brain alterations across all pain conditions, but also within specific pain types. This approach will contribute to identify plausible targets for more effective treatments for people living with both chronic pain and these comorbid conditions. 4. Examine the roles of key sociodemographic factors and medication on brain morphology and function Sex and age are key factors that can influence the transition to chronic pain.48 Women have greater prevalence rates for chronic pain conditions compared with men and experience more frequent, intense, and longer-lasting pain across the lifespan.14,24,30 These sex-specific differences can affect treatment choice, side effect profiles, and therapeutic responses.3 Although incompletely understood, many processes including genetic,29 neuroendocrine/neuroimmune,26 or brain-based differences,22 contribute to sex differences observed in chronic pain. Chronic pain is also highly prevalent in people of increasing age,14 along with other age-related pathologies, but the relationship between increasing age and chronic pain on brain morphology and function is still to be clearly determined. The inclusion of studies with comorbidity information that may inform causal modeling (eg, traumatic injuries, repetitive stress injuries, osteoporosis, metabolic disorders like diabetes, etc.) will clarify some of the brain–body connections at play. Existing preliminary evidence for the influence of these key sociodemographic factors needs further replication and refinement using large datasets. Another critical factor impacting brain morphology and function in chronic pain is the use of various types of pharmacological treatments,27 including tricyclic antidepressants, serotonin–norepinephrine reuptake inhibitors, antiepileptics, nonsteroidal anti-inflammatory drugs, and benzodiazepines.11,35 Using the available and detailed medication information recorded within ENIGMA-Chronic Pain, the aim of this study is to determine the variations in brain morphology and function associated with specific pharmacological treatment categories or combinations of thereof. 5. ENIGMA-Chronic Pain: expanding to other imaging modalities ENIGMA-Chronic Pain builds on the experience of the Consortium to host the largest and most comprehensive dataset for neuroimaging studies of chronic pain. In addition to sMRI, dMRI, and rs-fMRI data, ENIGMA-Chronic Pain will leverage the contribution of chronic pain researchers and clinicians with data and expertise in other neuroimaging modalities, including resting-state electroencephalography (EEG), task-based fMRI and EEG, event-related potentials, magnetoencephalography, functional near-infrared spectroscopy, and magnetic resonance spectroscopy. In addition, the aim of ENIGMA-Chronic Pain is to include neuromodulation studies, such as repetitive transcranial magnetic resonance stimulation, TMS-EEG, transcranial direct current stimulation, or transcranial alternating current stimulation studies, to examine potential causal associations.7 Finally, following work from the ENIGMA-Clinical Endpoint working group,41 a long-term goal includes building a framework of standardized questionnaires and tools for future research, to be applied to most, if not all, chronic pain conditions and to integrate genetics data to better understand the relationship between genetic and environmental risks on brain phenotypes of chronic pain overall and for available subtypes. 6. Conclusions ENIGMA-Chronic Pain will establish the largest worldwide platform for neuroimaging data dedicated to chronic pain research. This approach enables large-scale collaborative opportunities to identify the common and specific brain correlates of chronic pain conditions, as well as the role of mental health comorbidities, key sociodemographic factors, and pharmacological treatment on these alterations. This initiative will provide invaluable new knowledge based on adequately powered neuroimaging datasets. Future aims of the working group could include extending the scope to the earliest periods of the human lifespan, leveraging neonatal MRI and EEG datasets with pain-relevant paradigms,5 to investigate the potential developmental origins of chronic pain susceptibility in later years. Last, we extend the call to additional groups to join, contribute their expertise, and share their neuroimaging, genetic, psychological, and clinical data from healthy controls and individuals with chronic pain (see information and contact details on https://enigma.ini.usc.edu/ongoing/enigma-chronic-pain/). Through the inclusion of most, if not all, chronic pain neuroimaging research groups, we hope to grow the working group and thereby fulfill its goals. Conflict of interest statement None of the authors declare any conflicts of interest. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the United States government, or those of the NHS, the NIHR, or the Department of Health from the United Kingdom.
0
Citation2
0
Save
0

The Association between Exposure to Fine Particulate Matter and MRI-Assessed Locus Coeruleus Integrity in the Vietnam Era Twin Study of Aging (VETSA)

Olivia Puckett et al.Jul 1, 2024
+12
D
C
O
Increased exposure to ambient air pollution, especially fine particulate matter
0
Citation1
0
Save
Load More