Abstract Carboxysomes are proteinaceous organelles featuring icosahedral protein shells that enclose the carbon-fixing enzymes, Rubisco, alone with carbonic anhydrase. The intrinsically disordered scaffolding protein CsoS2 plays a vital role in the construction of α-carboxysomes through bridging the shell and cargo enzymes. The N-terminal domain of CsoS2 binds Rubisco and facilitates Rubisco packaging within the α-carboxysome, whereas the C-terminal domain of CsoS2 (CsoS2-C) anchors to the shell and promotes shell assembly. However, the role of the middle region of CsoS2 (CsoS2-M) has remained elusive. Here, we conducted indepth examinations on the function of CsoS2-M in the assembly of the α-carboxysome shell by generating a series of recombinant shell variants in the absence of cargos. Our results reveal that CsoS2-M assists CsoS2-C in the assembly of the α-carboxysome shell and plays an important role in shaping the α-carboxysome shell through enhancing the association of shell proteins on both the facet-facet interfaces and flat shell facets. Moreover, CsoS2-M is responsible for recruiting the C-terminal truncated isoform of CsoS2, CsoS2A, into α-carboxysomes, which is crucial for Rubisco encapsulation and packaging. This study not only deepens our knowledge of how the carboxysome shell is constructed and regulated but also lays the groundwork for engineering and repurposing carboxysome-based nanostructures for diverse biotechnological purposes.