ABSTRACT Adenosine deaminases acting on RNA (ADARs) can be repurposed to enable programmable RNA editing, however their exogenous delivery leads to transcriptome-wide off-targeting, and additionally, enzymatic activity on certain RNA motifs, especially those flanked by a 5’ guanosine is very low thus limiting their utility as a transcriptome engineering toolset. To address this, we explored comprehensive ADAR2 protein engineering via three approaches: First, we performed a novel deep mutational scan of the deaminase domain that enabled direct coupling of variants to corresponding RNA editing activity. Experimentally measuring the impact of every amino acid substitution across 261 residues, i.e. ~5000 variants, on RNA editing, revealed intrinsic domain properties, and also several mutations that greatly enhanced RNA editing. Second, we performed a domain-wide mutagenesis screen to identify variants that increased activity at 5’-GA-3 ’ motifs, and discovered novel mutants that enabled robust RNA editing. Third, we engineered the domain at the fragment level to create split deaminases. Notably, compared to full-length deaminase overexpression, split-deaminases resulted in >1000 fold more specific RNA editing. Taken together, we anticipate this comprehensive deaminase engineering will enable broader utility of the ADAR toolset for RNA biotechnology and therapeutic applications.