SM
Samantha Millard
Author with expertise in Mechanisms and Management of Neuropathic Pain
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(80% Open Access)
Cited by:
6
h-index:
7
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

ENIGMA-Chronic Pain: a worldwide initiative to identify brain correlates of chronic pain

Yann Quidé et al.Jul 26, 2024
Chronic pain has a profound societal burden, affecting 20% to 30% of the world population,10,13,14,47 and is associated with high rates of comorbid mental health conditions, especially depression and anxiety.15 Women and people of increasing age are disproportionately affected by chronic pain,14,32 and while there are pharmacological and nonpharmacological treatments available, many individuals still do not benefit from these treatments.11,16,19,31,35,45 One significant challenge in providing effective pain-relieving treatments arises from our incomplete understanding of the mechanisms underlying the development and maintenance of chronic pain. Some of these mechanisms include changes in brain morphology and function.2,8,12,18,25,28,37 One approach to better understand these mechanisms is to combine neuroimaging studies of diverse populations with the purpose of identifying common phenotypes and neuroimaging correlates. Phenotyping to explore both similarities and heterogeneity across pain conditions is necessary to inform disease prognosis and elucidate common treatment targets. To this endeavor, the Enhancing Neuroimaging and Genetics through Meta-Analysis (ENIGMA)-Chronic Pain working group was formed in November 2022. ENIGMA-Chronic Pain has since welcomed over 70 pain investigators from all over the world, to pool and integrate existing neuroimaging and clinical data from approximately 2000 chronic pain and 4000 pain-free healthy individuals, from over 30 international and independently collected datasets. 1. What is ENIGMA? What are the aims of the ENIGMA-Chronic Pain Working Group? Founded in 2009, the aim of the ENIGMA Consortium is to address the growing replication problems in neuroimaging research. ENIGMA is a global collaboration of more than 2000 scientists from over 45 countries studying the human brain, in health and over 30 neurological, mental, and neurogenetic diseases.42 ENIGMA coordinates large-scale neuroimaging analyses, pooling existing datasets from around the world,6,34,39 actively coordinating the reuse of data, while accommodating data privacy safeguards, bringing rich resources and expertise to answer fundamental questions related to major brain disorders. By integrating available existing datasets and building on the growing infrastructure of the ENIGMA consortium, ENIGMA-Chronic Pain provides a platform and a resource to the chronic pain community allowing for data findability, accessibility, interoperability, and44 reusability—all vital aspects of reproducible research. Using a cost-effective and innovative global approach by merging the resources and data of leading chronic pain neuroimaging centers, ENIGMA-Chronic Pain offers a unique opportunity to obtain detailed, reproducible, and reliable data on brain mechanisms associated with chronic pain. ENIGMA-Chronic Pain integrates single studies of specific chronic pain conditions, including precursor data repositories (eg, OpenPain), and larger population-based biobanks with recorded indices of chronic pain (eg, UK Biobank).8 Recent advances in machine learning and artificial intelligence technologies also offer new and powerful ways to analyze these existing neuroimaging data. Through a worldwide collaboration of pain researchers and clinicians, ENIGMA-Chronic Pain will aim to (1) determine common and pain condition-specific brain correlates of chronic pain through multimodal neuroimaging (relative to pain-free healthy controls); (2) examine the interactions between chronic pain and comorbid mental health conditions on brain morphology and function; and (3) identify the roles of key sociodemographic factors and medication on brain morphology and function. 2. Determine common and pain condition-specific brain correlates of chronic pain through multimodal neuroimaging ENIGMA-Chronic Pain combines smaller datasets from heterogeneous chronic pain conditions. This approach maximizes the power of planned analyses and is necessary to identify brain correlates shared across chronic pain conditions. Through planned follow-up analyses on pooled datasets of similar pain types, pain locations across the body, or specific diagnoses, ENIGMA-Chronic Pain will identify correlates specific to the studied conditions at a larger scale than has previously been possible. ENIGMA-Chronic Pain will begin with examining brain topography of chronic pain by using common processing pipelines and software such as FreeSurfer for T1-weighted structural magnetic resonance imaging scans (sMRI)17,20,21 or Functional MRI of the Brain Software Library (FSL) for diffusion MRI (dMRI).23,38 Further to brain-wide region-of-interest analyses, investigation of multimodal correlates and brain networks of chronic pain will be conducted using whole-brain analyses, including standardized indices of functional connectivity from resting-state functional MRI (rs-fMRI) processed with ENIGMA's HALFpipe,43 voxel-based morphometry, and machine learning approaches to fuse multimodal features from sMRI, dMRI, and rs-fMRI to make diagnostic classification or prediction of a future clinical state. 3. Examine the interactions between chronic pain and comorbid mental health conditions on brain morphology and function Chronic pain is often accompanied by comorbid mental health conditions that can prevent treatment success.46 For example, 5% to 85% of individuals with chronic pain (depending on the study populations and settings) experience depression.1,9 The ENIGMA Consortium has extensively investigated the detailed brain and genetic markers of most common mental health conditions and reported alterations in brain regions similar to those commonly reported in smaller chronic pain studies.4,36 Evidence for shared or specific brain mechanisms between chronic pain and depression and anxiety is now growing,33,40,49,50 but no definite conclusion can be drawn from these smaller studies. Using advanced statistical models, our unique sample size, and availability of indices of comorbid mental health conditions, the pooled dataset from ENIGMA-Chronic Pain will aim to disentangle the fine morphological and functional brain alterations across all pain conditions, but also within specific pain types. This approach will contribute to identify plausible targets for more effective treatments for people living with both chronic pain and these comorbid conditions. 4. Examine the roles of key sociodemographic factors and medication on brain morphology and function Sex and age are key factors that can influence the transition to chronic pain.48 Women have greater prevalence rates for chronic pain conditions compared with men and experience more frequent, intense, and longer-lasting pain across the lifespan.14,24,30 These sex-specific differences can affect treatment choice, side effect profiles, and therapeutic responses.3 Although incompletely understood, many processes including genetic,29 neuroendocrine/neuroimmune,26 or brain-based differences,22 contribute to sex differences observed in chronic pain. Chronic pain is also highly prevalent in people of increasing age,14 along with other age-related pathologies, but the relationship between increasing age and chronic pain on brain morphology and function is still to be clearly determined. The inclusion of studies with comorbidity information that may inform causal modeling (eg, traumatic injuries, repetitive stress injuries, osteoporosis, metabolic disorders like diabetes, etc.) will clarify some of the brain–body connections at play. Existing preliminary evidence for the influence of these key sociodemographic factors needs further replication and refinement using large datasets. Another critical factor impacting brain morphology and function in chronic pain is the use of various types of pharmacological treatments,27 including tricyclic antidepressants, serotonin–norepinephrine reuptake inhibitors, antiepileptics, nonsteroidal anti-inflammatory drugs, and benzodiazepines.11,35 Using the available and detailed medication information recorded within ENIGMA-Chronic Pain, the aim of this study is to determine the variations in brain morphology and function associated with specific pharmacological treatment categories or combinations of thereof. 5. ENIGMA-Chronic Pain: expanding to other imaging modalities ENIGMA-Chronic Pain builds on the experience of the Consortium to host the largest and most comprehensive dataset for neuroimaging studies of chronic pain. In addition to sMRI, dMRI, and rs-fMRI data, ENIGMA-Chronic Pain will leverage the contribution of chronic pain researchers and clinicians with data and expertise in other neuroimaging modalities, including resting-state electroencephalography (EEG), task-based fMRI and EEG, event-related potentials, magnetoencephalography, functional near-infrared spectroscopy, and magnetic resonance spectroscopy. In addition, the aim of ENIGMA-Chronic Pain is to include neuromodulation studies, such as repetitive transcranial magnetic resonance stimulation, TMS-EEG, transcranial direct current stimulation, or transcranial alternating current stimulation studies, to examine potential causal associations.7 Finally, following work from the ENIGMA-Clinical Endpoint working group,41 a long-term goal includes building a framework of standardized questionnaires and tools for future research, to be applied to most, if not all, chronic pain conditions and to integrate genetics data to better understand the relationship between genetic and environmental risks on brain phenotypes of chronic pain overall and for available subtypes. 6. Conclusions ENIGMA-Chronic Pain will establish the largest worldwide platform for neuroimaging data dedicated to chronic pain research. This approach enables large-scale collaborative opportunities to identify the common and specific brain correlates of chronic pain conditions, as well as the role of mental health comorbidities, key sociodemographic factors, and pharmacological treatment on these alterations. This initiative will provide invaluable new knowledge based on adequately powered neuroimaging datasets. Future aims of the working group could include extending the scope to the earliest periods of the human lifespan, leveraging neonatal MRI and EEG datasets with pain-relevant paradigms,5 to investigate the potential developmental origins of chronic pain susceptibility in later years. Last, we extend the call to additional groups to join, contribute their expertise, and share their neuroimaging, genetic, psychological, and clinical data from healthy controls and individuals with chronic pain (see information and contact details on https://enigma.ini.usc.edu/ongoing/enigma-chronic-pain/). Through the inclusion of most, if not all, chronic pain neuroimaging research groups, we hope to grow the working group and thereby fulfill its goals. Conflict of interest statement None of the authors declare any conflicts of interest. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the United States government, or those of the NHS, the NIHR, or the Department of Health from the United Kingdom.
0
Citation2
0
Save
0

POSTERIOR-SUPERIOR INSULA REPETITIVE TRANSCRANIAL MAGNETIC STIMULATION REDUCES EXPERIMENTAL TONIC PAIN AND PAIN-RELATED CORTICAL INHIBITION IN HUMANS

Nahian Chowdhury et al.May 15, 2024
ABSTRACT High frequency repetitive transcranial magnetic stimulation (rTMS) to the posterosuperior insula (PSI) may produce analgesic effects. However, the neuroplastic changes behind PSI-rTMS analgesia remain poorly understood. The present study aimed to determine whether tonic capsaicin-induced pain and cortical inhibition (indexed using TMS-electroencephalography) are modulated by PSI-rTMS. Twenty healthy volunteers (10 females) attended two sessions randomized to active or sham rTMS. Experimental pain was induced by capsaicin administered to the forearm for 90 minutes, with pain ratings collected every 5 minutes. Left PSI-rTMS was delivered (10Hz, 100 pulses per train, 15 trains) ∼50 minutes post-capsaicin administration. TMS-evoked potentials (TEPs) and thermal sensitivity were assessed at baseline, during capsaicin pain prior to rTMS and after rTMS. Bayesian evidence of reduced pain scores and increased heat pain thresholds were found following active rTMS, with no changes occurring after sham rTMS. Pain (prior to active rTMS) led to an increase in the frontal negative peak ∼45 ms (N45) TEP relative to baseline. Following active rTMS, there was a decrease in the N45 peak back to baseline levels. In contrast, following sham rTMS, the N45 peak was increased relative to baseline. We also found that the reduction in pain NRS scores following active vs. sham rTMS was partially mediated by decreases in the N45 peak. These findings provide evidence of the analgesic effects of PSI-rTMS and suggest that the TEP N45 peak is a potential marker and mediator of both pain and analgesia.
0
Citation1
0
Save
5

Can non-invasive brain stimulation modulate peak alpha frequency in the human brain? A systematic review and meta-analysis

Samantha Millard et al.Nov 16, 2023
Abstract Peak alpha frequency, the dominant oscillatory frequency within the alpha range (8–12 Hz), is associated with cognitive function and several neurological conditions, including chronic pain. Manipulating PAF could offer valuable insight into the relationship between PAF and various functions and conditions and provide new treatment avenues. This systematic review aimed to comprehensively synthesise effects of non-invasive brain stimulation (NIBS) on PAF speed. Relevant studies assessing PAF pre- and post-NIBS in healthy adults were identified through systematic searches of electronic databases (Embase, PubMed, PsychINFO, Scopus, The Cochrane Library) and trial registers. The Cochrane risk-of-bias tool was employed for assessing study quality. Quantitative analysis was conducted through pairwise meta-analysis when possible; otherwise, qualitative synthesis was performed. The review protocol was registered with PROSPERO (CRD42020190512) and the Open Science Framework ( https://osf.io/2yaxz/ ). Eleven NIBS studies were included, all with a low risk-of-bias, comprising seven transcranial alternating current stimulation (tACS), three repetitive transcranial magnetic stimulation (rTMS), and one transcranial direct current stimulation (tDCS) study. Meta-analysis of active tACS conditions (eight conditions from five studies) revealed no significant effects on PAF (mean difference [MD] = -0.12, 95% CI = -0.32 to 0.08, p = 0.24). Qualitative synthesis provided no evidence that tDCS altered PAF and moderate evidence for transient increases in PAF with 10 Hz rTMS. There is limited evidence that NIBS can modulate PAF, and existing evidence does not demonstrate robust effects. Further studies employing standardised stimulation protocols are necessary to determine the potential of NIBS to modulate PAF.
1

The influence of somatosensory and auditory evoked potentials on concurrent transcranial-magnetic stimulation – electroencephalography recordings

Nahian Chowdhury et al.Nov 19, 2021
Abstract Background Transcranial magnetic stimulation (TMS) evoked potentials (TEPs) can be used to index cortical excitability. However, it remains unclear to what extent TEPs reflect somatosensory and auditory-evoked potentials which arise from the scalp sensation and click of the TMS coil, as opposed to transcranial stimulation of cortical circuits. Objectives The present study had two aims; a) to determine the extent to which sensory potentials contaminate TEPs using a spatially matched sham condition, and b) to determine whether sensory potentials reflect auditory or somatosensory potentials alone, or a combination of the two. Methods Twenty healthy participants received active or sham stimulation, with the latter consisting of the click of a sham coil combined with scalp electrical stimulation. Earplugs/headphones were used to suppress the TMS click noise. Two additional control conditions i) electrical stimulation alone and ii) auditory stimulation alone were included in a subset of 13 participants. Results Signals from active and sham stimulation were correlated in spatial and temporal domains, especially >70ms post-stimulation. Relative to auditory or electrical stimulation alone, combined (sham) stimulation resulted in a) larger evoked responses b) stronger correlations with active stimulation and c) a signal that could not be explained by the linear sum of electrical and auditory stimulation alone. Conclusions Sensory potentials can confound data interpretations of TEPs at timepoints >70ms post-TMS, while earlier timepoints appear reflective of cortical excitability. Furthermore, contamination of TEPs cannot be explained by auditory or somatosensory potentials alone, but instead reflects a non-linear interaction between both sources. Future studies may benefit from controlling for sensory contamination using sham conditions that are spatially matched to active TMS, and which consist of combined auditory and somatosensory stimulation.
0

A silent disco: Persistent entrainment of low-frequency neural oscillations underlies beat-based, but not memory-based temporal expectations

Fleur Bouwer et al.Jan 8, 2020
Temporal expectations (e.g., predicting "when") facilitate sensory processing, and are suggested to rely on entrainment of low frequency neural oscillations to regular rhythmic input. However, temporal expectations can be formed not only in response to a regular beat, such as in music ("beat-based" expectations), but also based on a predictable pattern of temporal intervals of different durations ("memory-based" expectations). Here, we examined the neural mechanisms underlying beat-based and memory-based expectations, by assessing EEG activity and behavioral responses during silent periods following rhythmic auditory sequences that allowed for beat-based or memory-based expectations, or had random timing. In Experiment 1 (N = 32), participants rated how well probe tones at various time points fitted the previous rhythm. Beat-based expectations affected fitness ratings for at least two beat-cycles, while the effects of memory-based expectations subsided after the first expected time point in the silence window. In Experiment 2 (N = 27), using EEG, we found a CNV following the final tones of memory-based and random, but not beat-based sequences, suggesting that climbing neuronal activity may specifically reflect memory-based expectations. Moreover, we found enhanced power in the EEG signal at the beat frequency for beat-based sequences both during listening and the silence. For memory-based sequences, we found enhanced power at a frequency inherent to the memory-based pattern only during listening, but not during the silence, suggesting that ongoing entrainment of low frequency oscillations may be specific to beat-based expectations. Finally, using multivariate pattern decoding on the raw EEG data, we could classify above chance from the silence which type of sequence participants had heard before. Together, our results suggest that beat-based and memory-based expectations rely on entrainment and climbing neuronal activity, respectively.
0

A 5-day course of repetitive transcranial magnetic stimulation before pain onset ameliorates future pain and increases sensorimotor peak alpha frequency

Nahian Chowdhury et al.Dec 2, 2024
Abstract Repetitive transcranial magnetic stimulation (rTMS) has shown promise as an intervention for pain. An unexplored research question is whether the delivery of rTMS prior to pain onset might protect against a future episode of prolonged pain. The present study aimed to determine whether (1) 5 consecutive days of rTMS delivered prior to experimentally induced prolonged jaw pain has a prophylactic effect on future pain intensity and (2) whether these effects were accompanied by increases in corticomotor excitability (CME) and/or sensorimotor peak alpha frequency (PAF). On each day from day 0 to 4, 40 healthy individuals received a single session of active (n = 21) or sham (n = 19) rTMS over the left primary motor cortex. Peak alpha frequency and CME were assessed on day 0 (before rTMS) and day 4 (after rTMS). Prolonged pain was induced via intramuscular injection of nerve growth factor in the right masseter muscle after the final rTMS session. From days 5 to 25, participants completed twice-daily electronic diaries including pain on chewing and yawning (primary outcomes), as well as pain during other activities (eg, talking), functional limitation in jaw function and muscle soreness (secondary outcomes). Compared to sham, individuals who received active rTMS subsequently experienced lower pain on chewing and yawning. Furthermore, active rTMS led to an increase in PAF. This is the first study to show that rTMS delivered prior to prolonged pain onset can protect against future pain. Our findings suggest that rTMS may hold promise as a prophylactic intervention for pain.
1

Alterations in cortical excitability during pain: A combined TMS-EEG Study

Nahian Chowdhury et al.Apr 21, 2023
Abstract Transcranial magnetic stimulation (TMS) has been used to examine inhibitory and facilitatory circuits during experimental pain and in chronic pain populations. However, current applications of TMS to pain have been restricted to measurements of motor evoked potentials (MEPs) from peripheral muscles. Here, TMS was combined with electroencephalography (EEG) to determine whether experimental pain could induce alterations in cortical inhibitory/facilitatory activity observed in TMS-evoked potentials (TEPs). In Experiment 1 (n = 29), multiple sustained thermal stimuli were administered to the forearm, with the first, second and third block of thermal stimuli consisting of warm but non-painful (pre-pain block), painful (pain block) and warm but non-painful (post-pain block) temperatures respectively. During each stimulus, TMS pulses were delivered while EEG (64 channels) was simultaneously recorded. Verbal pain ratings were collected between TMS pulses. Relative to pre-pain warm stimuli, painful stimuli led to an increase in the amplitude of the frontocentral negative peak ∼45ms post-TMS (N45), with a larger increase associated with higher pain ratings. Experiments 2 and 3 (n = 10 in each) showed that the increase in the N45 in response to pain was not due to changes in sensory potentials associated with TMS, or a result of stronger reafferent muscle feedback during pain. This is the first study to use combined TMS-EEG to examine alterations in cortical excitability in response to pain. These results suggest that the N45 TEP peak, which indexes GABAergic neurotransmission, is implicated in pain perception and is a potential marker of individual differences in pain sensitivity.
0

A 5-day course of rTMS before pain onset ameliorates future pain and increases sensorimotor peak alpha frequency

Nahian Chowdhury et al.Jun 13, 2024
Abstract Repetitive transcranial magnetic stimulation (rTMS) has shown promise as an intervention for pain. An unexplored research question is whether the delivery of rTMS prior to pain onset might protect against a future episode of prolonged pain. The present study aimed to determine i) whether 5 consecutive days of rTMS delivered prior to experimentally-induced prolonged jaw pain could reduce future pain intensity and ii) whether any effects of rTMS on pain were mediated by changes in corticomotor excitability (CME) and/or sensorimotor peak alpha frequency (PAF). On each day from Day 0-4, forty healthy individuals received a single session of active (n = 21) or sham (n = 19) rTMS over the left primary motor cortex. PAF and CME were assessed on Day 0 (before rTMS) and Day 4 (after rTMS). Prolonged pain was induced via intramuscular injection of nerve growth factor (NGF) in the right masseter muscle after the final rTMS session. From Days 5-25, participants completed twice-daily electronic dairies including pain on chewing and yawning (primary outcomes), as well as pain during other activities (e.g. talking), functional limitation in jaw function and muscle soreness (secondary outcomes). Compared to sham, individuals who received active rTMS subsequently experienced lower pain on chewing and yawning. Although active rTMS increased PAF, the effects of rTMS on pain were not mediated by changes in PAF or CME. This study is the first to show that rTMS delivered prior to pain onset can protect against future pain and associated functional impairment. Thus, rTMS may hold promise as a prophylactic intervention for persistent pain.
0

Peak alpha frequency is not significantly altered by five days of experimental pain and repetitive transcranial stimulation of the left dorsolateral prefrontal cortex

Samantha Millard et al.Jun 14, 2024
Abstract Repetitive transcranial magnetic stimulation (rTMS) holds promise as a non-invasive pain treatment. Given the link between individual peak alpha frequency (PAF) of resting-state electroencephalographic recordings and pain sensitivity, and the potential for rTMS to modulate PAF, we investigated these relationships through a secondary analysis of established rTMS-induced analgesia in an experimental model of sustained muscle pain. In a randomised, single-blind, sham-controlled experiment, 30 healthy adults underwent either active (n=15) or sham (n=15) high-frequency rTMS (20 min) to the left dorsolateral prefrontal cortex for five consecutive days following induction of sustained experimental pain by nerve growth factor (NGF) injected into the right extensor carpi radialis brevis muscle. The pain intensity was assessed daily for 14 days on a numerical rating scale (NRS). PAF of the resting state electroencephalography (5 min) was assessed before and one day after the five rTMS treatment days. The pre-registered analysis revealed no significant changes in PAF following five consecutive days of active (from 9.90±0.39 Hz to 9.95±0.38 Hz) or sham (from 9.86±0.44 Hz to 9.81±0.35 Hz) rTMS, suggesting that the impact of rTMS on NGF- induced pain is independent of PAF modulation. However, exploratory analysis indicated an association between the absolute difference of baseline PAF to 10 Hz (i.e. the rTMS frequency) and higher NRS pain ratings at Day 5 in participants receiving active rTMS. This suggests that rTMS is more efficient when delivered close to the individual PAF and necessitates further exploration of PAF’s role in rTMS-induced pain relief. Disclosures: The Center for Neuroplasticity and Pain (CNAP) is supported by the Danish National Research Foundation (DNRF121). The authors have no conflicts of interest to declare.