FF
Francisco Fernandes
Author with expertise in Collagen Structure and Applications
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
2
h-index:
21
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
7

Tunable biomimetic materials elaborated by ice templating and self-assembly of collagen for tubular tissue engineering

Isabelle Martinier et al.Sep 1, 2023
+11
A
F
I
Synthetic tubular grafts currently used in clinical context fail frequently, and the expectations that biomimetic materials could tackle these limitations are high. However, developing tubular materials presenting structural, compositional and functional properties close to those of native tissues remains an unmet challenge. Here we describe a combination of ice templating and topotactic fibrillogenesis of type I collagen, the main component of tissues’ extracellular matrix, yielding highly concentrated yet porous tubular collagen materials with controlled hierarchical architecture at multiple length scales, the hallmark of native tissues’ organization. By modulating the thermal conductivity of the cylindrical molds, we tune the macroscopic porosity defined by ice. Coupling the aforementioned porosity patterns with two different fibrillogenesis routes results in a new family of materials whose textural features and the supramolecular arrangement of type I collagen are achieved. The resulting materials present hierarchical elastic properties and are successfully colonized by human endothelial cells and alveolar epithelial cells on the luminal side, and by human mesenchymal stem cells on the external side. The results reported here demonstrate the relevance of the proposed straightforward protocol, likely to be adapted for larger graft sizes, to address ever-growing clinical needs such as peripheral arterial disease or tracheal and bronchial reconstructions.
7
Citation1
0
Save
1

Porous yet Dense matrices: using ice to shape collagen 3D cell culture systems with increased physiological relevance

Cleo Parisi et al.Mar 14, 2022
+3
G
B
C
ABSTRACT Standard in vitro cell culture is one of the pillars of biomedical science. However, there is increasing evidence that 2D systems provide biological responses that are often in disagreement with in vivo observations, partially due to limitations in reproducing the native cellular microenvironment. 3D materials that are able to mimic the native cellular microenvironment to a greater extent tackle these limitations. Here, we report Porous yet Dense (PyD) type I collagen materials obtained by ice-templating followed by topotactic fibrillogenesis. These materials combine extensive macroporosity, favouring the cell migration and nutrients exchange, as well as dense collagen walls, which mimic locally the Extracellular Matrix. When seeded with Normal Human Dermal Fibroblasts (NHDFs), PyD matrices allow for a faster and more extensive colonisation when compared with equivalent Non-Porous matrices. The textural properties of the PyD materials also impact cytoskeletal and nuclear 3D morphometric parameters. Due to the effectiveness in creating a biomimetic 3D environment for NHDFs and the ability to promote cell culture for more than 28 days without subculture, we anticipate that PyD materials could configure an important step towards in vitro systems applicable to other cell types and with higher physiological relevance.
1
Citation1
0
Save
0

State diagrams of type I collagen for the rational design of biomimetic materials

Isabelle Martinier et al.May 18, 2024
+3
G
S
I
Abstract Ideally, designing tissue engineering grafts and 3D cell culture materials should rely on mimicking the architecture and composition of the extracellular matrix, which is predominantly comprised of type I collagen. However, while collagen molecules are assembled into fibrils by cells in vivo, well-organized fibrils rarely form spontaneously in vitro. Indeed, the physico-chemical conditions for fibrillogenesis are still poorly understood and their influence on the formation and properties of fibrillar biomimetic materials remains elusive. Here, we establish state diagrams for type I collagen over an unprecedented range of concentration and temperature, showing the collagen denaturation limits, the emergence of fibrils in acidic conditions, and a new regime of collagen molecule/fibril coexistence. We also show how the state diagrams can be used to understand the formation of biomimetic materials by classical methods, as illustrated here by collagen freeze-casting. Therefore, these state diagrams will help to optimize the production of collagen-based biomimetic materials.
0

Unveiling cells’ local environment during cryopreservation by correlative in situ spatial and thermal analyses

Kankan Qin et al.Apr 23, 2020
+4
F
C
K
Abstract Cryopreservation is the only fully established procedure to extend the lifespan of living cells and tissues, a key to activities spanning from fundamental biology to clinical practice. Despite its prevalence and impact, central aspects of cryopreservation, such as the cell’s physico-chemical environment during freezing, remain elusive. Here we address that question by coupling in situ microscopic directional freezing to visualize cells and their surroundings during freezing with the freezing medium phase diagram. We extract the freezing medium spatial distribution in cryopreservation, providing a tool to describe the cell vicinity at any point during freezing. We show that two major events define the cells’ local environment over time: the interaction with the moving ice front and with the vitreous moving front – a term we introduce here. Our correlative strategy may be applied to cells relevant in clinical research and practice, and help designing new cryoprotective media based on local physico-chemical cues.