EB
Enrico Bagnoli
Author with expertise in Mechanisms of Intracellular Membrane Trafficking
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
4
h-index:
5
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
73

Golgi-IP, a novel tool for multimodal analysis of Golgi molecular content

Rotimi Fasimoye et al.Nov 23, 2022
+9
R
W
R
Abstract The Golgi is a membrane-bound organelle that is essential for protein and lipid biosynthesis. It represents a central trafficking hub that sorts proteins and lipids to various destinations or for secretion from the cell. The Golgi has emerged as a docking platform for cellular signalling pathways including LRRK2 kinase whose deregulation leads to Parkinson disease. Golgi dysfunction is associated with a broad spectrum of diseases including cancer, neurodegeneration, and cardiovascular diseases. To allow the study of the Golgi at high resolution, we report a rapid immunoprecipitation technique (Golgi-IP) to isolate intact Golgi mini-stacks for subsequent analysis of their content. By fusing the Golgi resident protein TMEM115 to three tandem HA epitopes (GolgiTAG), we purified the Golgi using Golgi-IP with minimal contamination from other compartments. We then established an analysis pipeline using liquid chromatography coupled with mass spectrometry to characterize the human Golgi proteome, metabolome and lipidome. Subcellular proteomics confirmed known Golgi proteins and identified novel ones. Metabolite profiling established the first known human Golgi metabolome and revealed the selective enrichment of uridine-diphosphate (UDP) sugars and their derivatives, which is consistent with their roles in protein and lipid glycosylation. Furthermore, targeted metabolomics validated SLC35A2 as the subcellular transporter for UDP-hexose. Finally, lipidomics analysis showed that phospholipids including phosphatidylcholine, phosphatidylinositol and phosphatidylserine are the most abundant Golgi lipids and that glycosphingolipids are enriched in this compartment. Altogether, our work establishes a comprehensive molecular map of the human Golgi and provides a powerful method to study the Golgi with high precision in health and disease states. Significance The Golgi is central to protein and lipid processing. It senses and responds to diverse cell states to allow trafficking of macromolecules based on cellular demands. Traditional techniques for purifying the Golgi shaped our understanding of its functions, however such methods are too slow to preserve the labile Golgi metabolome and transient protein interactions. Here, we overcome this issue through the development of a method for the rapid capture of intact Golgi from human cells using organelle-specific immunoprecipitation (Golgi-IP). Using high resolution mass spectrometry, we demonstrate that our approach allows the unbiased characterization of the Golgi proteome, metabolome and lipidome. Thus, we believe that the Golgi-IP will be useful for the study of the Golgi in health and disease states.
73
Citation2
0
Save
0

Tagless LysoIP method for molecular profiling of lysosomal content in clinical samples

Daniel Saarela et al.May 19, 2024
+24
M
K
D
Abstract Lysosomes are implicated in a wide spectrum of human diseases including monogenic lysosomal storage disorders (LSDs), age-associated neurodegeneration and cancer. Profiling lysosomal content using tag-based lysosomal immunoprecipitation (LysoTagIP) in cell and animal models allowed major discoveries in the field, however studying lysosomal dysfunction in human patients remains challenging. Here, we report the development of the “tagless LysoIP method” to enable rapid enrichment of lysosomes, via immunoprecipitation, using the endogenous integral lysosomal membrane protein TMEM192, directly from clinical samples and human cell lines (e.g. induced Pluripotent Stem Cell (iPSCs) derived neurons). Isolated lysosomes are intact and suitable for subsequent multimodal omics analyses. To validate our approach, we employed the tagless LysoIP to enrich lysosomes from peripheral blood mononuclear cells (PBMCs) derived from fresh blood from patients with CLN3 disease, a neurodegenerative LSD. Metabolic profiling of isolated lysosomes showed massive accumulation of glycerophosphodiesters (GPDs) in patients’ lysosomes. Interestingly, a patient with a milder phenotype and genotype displayed lower accumulation of lysosomal GPDs, consistent with their potential role as disease biomarkers. Altogether, the tagless LysoIP provides a framework to study native lysosomes from patient samples, identify novel biomarkers and discover human-relevant disease mechanisms.
0
Citation1
0
Save
0

Endogenous LRRK2 and PINK1 function in a convergent neuroprotective ciliogenesis pathway in the brain

Enrico Bagnoli et al.Jun 11, 2024
+15
S
Y
E
ABSTRACT Mutations in LRRK2 and PINK1 are associated with familial Parkinson’s disease (PD). LRRK2 phosphorylates Rab GTPases within the Switch II domain whilst PINK1 directly phosphorylates Parkin and ubiquitin and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and ubiquitin phosphorylation. In addition, we observe that a pool of the Rab-specific, PPM1H phosphatase, is transcriptionally up-regulated and recruited to damaged mitochondria, independent of PINK1 or LRRK2 activity. Parallel signalling of LRRK2 and PINK1 pathways is supported by assessment of motor behavioural studies that show no evidence of genetic interaction in crossed mouse lines. Previously we showed loss of cilia in LRRK2 R1441C mice and herein we show that PINK1 KO mice exhibit a ciliogenesis defect in striatal cholinergic interneurons and astrocytes that interferes with Hedgehog induction of glial derived-neurotrophic factor (GDNF) transcription. This is not exacerbated in double mutant LRRK2 and PINK1 mice. Overall, our analysis indicates that LRRK2 activation and/or loss of PINK1 function along parallel pathways to impair ciliogenesis, suggesting a convergent mechanism towards PD. Our data suggests that reversal of defects downstream of ciliogenesis offers a common therapeutic strategy for LRRK2 or PINK1 PD patients whereas LRRK2 inhibitors that are currently in clinical trials are unlikely to benefit PINK1 PD patients.
0
Citation1
0
Save
18

Micromotion derived fluid shear stress mediates peri-electrode gliosis through mechanosensitive ion channels

Alexandre Trotier et al.Jan 13, 2023
+6
T
E
A
Abstract Clinical applications for neural implant technologies are steadily advancing. Yet, despite clinical successes, neuroelectrode-based therapies require invasive neurosurgery and can subject local soft-tissues to micro-motion induced mechanical shear, leading to the development of peri-implant scaring. This reactive glial tissue creates a physical barrier to electrical signal propagation, leading to loss of device function. Although peri-electrode gliosis is a well described contributor to neuroelectrode failure, the mechanistic basis behind the initiation and progression of glial scarring remains poorly understood. Here, we develop an in silico model of electrode-induced shear stress to evaluate the evolution of the peri-electrode fluid-filled void, encompassing a solid and viscoelastic liquid/solid interface. This model was subsequently used to inform an in vitro parallel-plate flow model of micromotion mediated peri-electrode fluid shear stress. Ventral mesencephalic E14 rat embryonic in vitro cultures exposed to physiologically relevant fluid shear exhibited upregulation of gliosis-associated proteins and the overexpression of two mechanosensitive ion channel receptors, PIEZO1 and TRPA1, confirmed in vivo in a neural probe induced rat glial scar model. Finally, it was shown in vitro that chemical inhibition/activation of PIEZO1 could exacerbate or attenuate astrocyte reactivity as induced by fluid shear stress and that this was mitochondrial dependant. Together, our results suggests that mechanosensitive ion channels play a major role in the development of the neuroelectrode micromotion induced glial scar and that the modulation of PIEZO1 and TRPA1 through chemical agonist/antagonist may promote chronic electrode stability in vivo . Graphical abstract Highlights Peri-electrode void progression is mediated by fluid flow shear stress Oscillatory fluid flow shear stress replicates neuroelectrode glial scarring in vitro Astrocyte PIEZO1 and TRPA1 are upregulated at the peri-electrode region in response to electrode micromotion PIEZO1 pharmaceutical activation diminishes shear stress-induced gliosis PIEZO1 chemical inhibition exacerbates gliosis and reduces mitochondrial functions