XS
Xiaoyuan Song
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
2,471
h-index:
22
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription

Xiangting Wang et al.May 28, 2008
+7
P
C
X
DNA damage induces expression of a non-coding RNA, which acts like a ligand to recruit a specific RNA-binding protein, TLS. This protein in turn represses transcription of the gene to which the non-coding RNA is tethered by inhibiting a histone acetyltransferase coactivator. These data suggest that non-coding RNAs induced in regulatory regions of transcription units recruit and modulate the activities of distinct classes of RNA binding co-regulators in response to specific signalling programs, providing an unexpected RNA-based strategy to integrate transcriptional programs. A signal-induced non-coding RNA is shown to act like a ligand to activate a specific RNA-binding protein, TLS. This protein in turn represses gene transcription by inhibiting a histone acetyltransferase coactivator. With the recent recognition of non-coding RNAs (ncRNAs) flanking many genes1,2,3,4,5, a central issue is to obtain a full understanding of their potential roles in regulated gene transcription programmes, possibly through different mechanisms6,7,8,9,10,11,12. Here we show that an RNA-binding protein, TLS (for translocated in liposarcoma), serves as a key transcriptional regulatory sensor of DNA damage signals that, on the basis of its allosteric modulation by RNA, specifically binds to and inhibits CREB-binding protein (CBP) and p300 histone acetyltransferase activities on a repressed gene target, cyclin D1 (CCND1) in human cell lines. Recruitment of TLS to the CCND1 promoter to cause gene-specific repression is directed by single-stranded, low-copy-number ncRNA transcripts tethered to the 5′ regulatory regions of CCND1 that are induced in response to DNA damage signals. Our data suggest that signal-induced ncRNAs localized to regulatory regions of transcription units can act cooperatively as selective ligands, recruiting and modulating the activities of distinct classes of RNA-binding co-regulators in response to specific signals, providing an unexpected ncRNA/RNA-binding protein-based strategy to integrate transcriptional programmes.
0
Citation954
0
Save
0

Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation

Wenbo Li et al.May 31, 2013
+11
Q
D
W
The functional importance of gene enhancers in regulated gene expression is well established. In addition to widespread transcription of long non-coding RNAs (lncRNAs) in mammalian cells, bidirectional ncRNAs are transcribed on enhancers, and are thus referred to as enhancer RNAs (eRNAs). However, it has remained unclear whether these eRNAs are functional or merely a reflection of enhancer activation. Here we report that in human breast cancer cells 17β-oestradiol (E2)-bound oestrogen receptor α (ER-α) causes a global increase in eRNA transcription on enhancers adjacent to E2-upregulated coding genes. These induced eRNAs, as functional transcripts, seem to exert important roles for the observed ligand-dependent induction of target coding genes, increasing the strength of specific enhancer-promoter looping initiated by ER-α binding. Cohesin, present on many ER-α-regulated enhancers even before ligand treatment, apparently contributes to E2-dependent gene activation, at least in part by stabilizing E2/ER-α/eRNA-induced enhancer-promoter looping. Our data indicate that eRNAs are likely to have important functions in many regulated programs of gene transcription.
0
Citation916
0
Save
0

9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response

Olivier Harismendy et al.Feb 1, 2011
+8
X
D
O
A non-coding region on chromosome 9p21 was previously shown to associate with coronary artery disease and type 2 diabetes, and the region has been implicated in regulating neighbouring genes. Here the authors identify 33 distinct enhancers within this region and show that single nucleotide polymorphisms in one of the enhancers affect STAT1 binding. They further show that in human vascular endothelium cells, the enhancer interval physically interacts with a number of specific loci, and that interferon-γ activation strongly affects the chromatin structure and transcriptional regulation of the 9p21 locus, including STAT1 binding, long-range enhancer interactions and expression of neighbouring genes. A non-coding region on chromosome 9p21 was previously shown to associate with coronary artery disease and type 2 diabetes, and the region has been implicated in regulating neighbouring genes. Here, 33 distinct enhancers within this region are identified, showing that SNPs in one of the enhancers affect STAT1 binding. Furthermore, it is shown that in human vascular endothelial cells the enhancer interval physically interacts with a number of specific loci and that IFN-γ activation strongly affects the chromatin structure and transcriptional regulation of the 9p21 locus, including STAT1 binding, long-range enhancer interactions and expression of neighbouring genes. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) in the 9p21 gene desert associated with coronary artery disease (CAD)1,2,3,4 and type 2 diabetes5,6,7. Despite evidence for a role of the associated interval in neighbouring gene regulation8,9,10, the biological underpinnings of these genetic associations with CAD or type 2 diabetes have not yet been explained. Here we identify 33 enhancers in 9p21; the interval is the second densest gene desert for predicted enhancers and six times denser than the whole genome (P < 6.55 × 10−33). The CAD risk alleles of SNPs rs10811656 and rs10757278 are located in one of these enhancers and disrupt a binding site for STAT1. Lymphoblastoid cell lines homozygous for the CAD risk haplotype show no binding of STAT1, and in lymphoblastoid cell lines homozygous for the CAD non-risk haplotype, binding of STAT1 inhibits CDKN2BAS (also known as CDKN2B-AS1) expression, which is reversed by short interfering RNA knockdown of STAT1. Using a new, open-ended approach to detect long-distance interactions, we find that in human vascular endothelial cells the enhancer interval containing the CAD locus physically interacts with the CDKN2A/B locus, the MTAP gene and an interval downstream of IFNA21. In human vascular endothelial cells, interferon-γ activation strongly affects the structure of the chromatin and the transcriptional regulation in the 9p21 locus, including STAT1-binding, long-range enhancer interactions and altered expression of neighbouring genes. Our findings establish a link between CAD genetic susceptibility and the response to inflammatory signalling in a vascular cell type and thus demonstrate the utility of genome-wide association study findings in directing studies to novel genomic loci and biological processes important for disease aetiology.
0
Citation601
0
Save
0

Three-dimensional genome reorganization during mouse spermatogenesis

Zhengyu Luo et al.Mar 21, 2019
+13
Y
J
Z
Three-dimensional genome organization plays an important role in many biological processes. Yet, how the genome is packaged at the molecular level during mammalian spermatogenesis remains unclear. Here, we performed Hi-C in seven sequential stages during mouse spermatogenesis. We found that topological associating domains (TADs) and chromatin loops underwent highly dynamic reorganization. They displayed clear existence in primitive type A spermatogonia, disappearance at pachytene stage, and reestablishment in spermatozoa. Surprisingly, even in the absence of TADs and chromatin loops at pachytene stage, CTCF remained bound at TAD boundary regions (identified in primitive type A spermatogonia). Additionally, many enhancers and promoters exhibited features of open chromatin and transcription remained active at pachytene stage. A/B compartmentalization and segmentation ratio were conserved in different stages of spermatogenesis in autosomes, although there were A/B compartment switching events correlated with gene activity changes. Intriguingly, A/B compartment structure on the X chromosome disappeared during pacSC, rST and eST stages. Together, our work uncovered a dynamic three-dimensional chromatin organization during mouse spermatogenesis and suggested that transcriptional regulation could be independent of TADs and chromatin loops at specific developmental stages.
0

Recruitment of CTCF to the SIRT1 promoter after Oxidative Stress mediates Cardioprotective Transcription

Tammy Wagner et al.May 19, 2024
+23
J
W
T
ABSTRACT Because most DNA-binding transcription factors (dbTFs), including the architectural regulator CTCF, bind RNA and exhibit di-/multimerization, a central conundrum is whether these distinct properties are regulated post-transcriptionally to modulate transcriptional programs. Here, investigating stress-dependent activation of SIRT1, encoding an evolutionarily-conserved protein deacetylase, we show that induced phosphorylation of CTCF acts as a rheostat to permit CTCF occupancy of low-affinity promoter DNA sites to precisely the levels necessary. This CTCF recruitment to the SIRT1 promoter is eliciting a cardioprotective cardiomyocyte transcriptional activation program and provides resilience against the stress of the beating heart in vivo . Mice harboring a mutation in the conserved low-affinity CTCF promoter binding site exhibit an altered, cardiomyocyte-specific transcriptional program and a systolic heart failure phenotype. This transcriptional role for CTCF reveals that a covalent dbTF modification regulating signal-dependent transcription serves as a previously unsuspected component of the oxidative stress response.