KM
Kendall Morris
Author with expertise in Brain Fluid Dynamics and Waste Clearance Mechanisms
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(100% Open Access)
Cited by:
751
h-index:
17
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A concerted neuron–astrocyte program declines in ageing and schizophrenia

Emi Ling et al.Mar 6, 2024
Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.
0
Citation8
-1
Save
4

Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation

Ryszard Gomolka et al.Jul 29, 2022
ABSTRACT The glymphatic system is a fluid transport network of cerebrospinal fluid (CSF) entering the brain along arterial perivascular spaces, exchanging with interstitial fluid (ISF), ultimately establishing directional clearance of interstitial solutes. CSF transport is facilitated by the expression of aquaporin-4 (AQP4) water channels on the perivascular endfeet of astrocytes. Mice with genetic deletion of AQP4 (AQP4 KO) exhibit abnormalities in the brain structure and molecular water transport. Yet, no studies have systematically examined how these abnormalities in structure and water transport correlate with glymphatic function. Here we used high-resolution 3D magnetic resonance (MR) non-contrast cisternography, diffusion-weighted MR imaging (MR-DWI) along with intravoxel-incoherent motion (IVIM) DWI, while evaluating glymphatic function using a standard dynamic contrast-enhanced MR imaging to better understand how water transport and glymphatic function is disrupted after genetic deletion of AQP4. AQP4 KO mice had larger interstitial spaces and total brain volumes resulting in higher water content and reduced CSF space volumes, despite similar CSF production rates and vascular density compared to wildtype mice. The larger interstitial fluid volume likely resulted in increased slow but not fast MR diffusion scores and coincided with reduced glymphatic influx. This markedly altered brain fluid transport in AQP4 KO mice may result from a reduction in glymphatic clearance, leading to stagnation of ISF movement and enlargement of the interstitial space. Overall, diffusion MR is a useful tool to evaluate glymphatic function and may serve as valuable translational biomarker to study glymphatics in human disease.
0

GABAergic signalling in the suprachiasmatic nucleus is required for coherent circadian rhythmicity

Nathan Klett et al.Nov 18, 2024
Abstract The suprachiasmatic nucleus is the circadian pacemaker of the mammalian brain. Suprachiasmatic nucleus neurons display synchronization of their firing frequency on a circadian timescale, which is required for the pacemaker function of the suprachiasmatic nucleus. However, the mechanisms by which suprachiasmatic nucleus neurons remain synchronized in vivo are poorly understood, although synaptic communication is considered indispensable. Suprachiasmatic nucleus neurons contain the neurotransmitter GABA and express GABA receptors. This has inspired the hypothesis that GABA signalling may play a central role in network synchronization, although this remains untested in vivo. Here, using local genetic deletion, we show that disruption of GABA synaptic transmission within the suprachiasmatic nucleus of adult mice results in the eventual deterioration of physiological and behavioural rhythmicity in vivo and concomitant cellular desynchrony in vitro. These findings suggest that intercellular GABA signalling is essential for behavioural rhythmicity and cellular synchrony of the suprachiasmatic nucleus neural network.
0

Long somatic DNA-repeat expansion drives neurodegeneration in Huntington disease

Robert Handsaker et al.May 20, 2024
Abstract Huntington Disease (HD) is a fatal genetic disease in which most striatal projection neurons (SPNs) degenerate. The central biological question about HD pathogenesis has been how the disease-causing DNA repeat expansion (CAG n ) in the huntingtin ( HTT ) gene leads to neurodegeneration after decades of apparent latency. Inherited HTT alleles with a longer CAG repeat hasten disease onset; the length of this repeat also changes over time, generating somatic mosaicism, and genes that regulate DNA-repeat stability can influence HD age-at-onset. To understand the relationship between a cell’s CAG-repeat length and its biological state, we developed a single-cell method for measuring CAG-repeat length together with genome-wide RNA expression. We found that the HTT CAG repeat expands from 40-45 CAGs to 100-500+ CAGs in HD-vulnerable SPNs but not in other striatal cell types, with these long DNA-repeat expansions acquired at different times by individual SPNs. Surprisingly, somatic expansion from 40 to 150 CAGs had no apparent effect upon gene expression – but neurons with 150-500+ CAGs shared profound gene-expression changes. These expression changes involved hundreds of genes, escalated alongside further CAG-repeat expansion, eroded positive and then negative features of neuronal identity, and culminated in expression of senescence/apoptosis genes. Rates of striatal neuron loss across HD stages reflected the rates at which neurons entered this biologically distorted state. Our results suggest that HTT CAG repeats in striatal neurons undergo decades of biologically quiet expansion, then, as they asynchronously cross a high threshold, cause SPNs to degenerate quickly and asynchronously. We conclude that, at any moment in the course of HD, most neurons have an innocuous (but unstable) huntingtin gene, and that HD pathogenesis is a DNA process for almost all of a neuron’s life.
0

Blood osmolytes such as sugar can drive brain fluid flows in a poroelastic model

Peter Bork et al.Nov 22, 2024
The glymphatic system of fluid flow through brain tissue may clear amyloid-β during sleep and as such underlie the need for sleep. Dysfunctional glymphatic transport has been implicated in pathological conditions ranging from stroke and dementia to psychiatric illnesses. To date, the fastest observed in-vivo brain flows have been reported after the manipulation of blood osmotic pressures. Surprisingly, the brain seems to shrink while receiving more influx. Though influx of an incompressible fluid might expand the tissue, no physical theory for these observations has been proposed. We here present a minimal mathematical model of brain pressure, deformation, and fluid flows due to vascular osmotic pressures. The model is based on Darcy flow, linear poroelasticity theory and conservation of mass. We propose that a screened Poisson equation holds for interstitial pressure because vascular filtration corresponds to fluid divergence. The model resolves the apparent paradox of combined fluid influx with tissue shrinkage by showing that fluid absorption into the blood can drive both. In this model, small glucose concentration differences between plasma and brain can drive brain flow velocities observed in recent in-vivo assays. Osmosis may therefore drive brain fluid flow under physiological conditions and provide an explanation for the known correlations between diabetes and dementia.
0

Hypoxia evokes a sequence of raphe-pontomedullary network operations for inspiratory drive amplification and gasping

Sarah Nuding et al.Nov 10, 2023
Hypoxia can trigger a sequence of breathing-related behaviors, from tachypnea to apneusis to apnea and gasping, an autoresuscitative behavior that, via large tidal volumes and altered intrathoracic pressure, can enhance coronary perfusion, carotid blood flow, and sympathetic activity, and thereby coordinate cardiac and respiratory functions. We tested the hypothesis that hypoxia-evoked gasps are amplified through a disinhibitory microcircuit within the inspiratory neuron chain and a distributed efference copy mechanism that generates coordinated gasp-like discharges concurrently in other circuits of the raphe-pontomedullary respiratory network. Data were obtained from 6 decerebrate, vagotomized, neuromuscularly-blocked, and artificially ventilated adult cats. Arterial blood pressure, phrenic nerve activity, end-tidal CO2, and other parameters were monitored. Hypoxia was produced by ventilation with a gas mixture of 5% O2 in nitrogen (N2). Neuron spike trains were recorded at multiple pontomedullary sites simultaneously and evaluated for firing rate modulations and short-time scale correlations indicative of functional connectivity. Experimental perturbations evoked reconfiguration of raphe-pontomedullary circuits during tachypnea, apneusis and augmented bursts, apnea, and gasping. The functional connectivity, altered firing rates, efference copy of gasp drive, and coordinated step increments in blood pressure reported here support a distributed brain stem network model for amplification and broadcasting of inspiratory drive during autoresuscitative gasping that begins with a reduction in inhibition by expiratory neurons and an initial loss of inspiratory drive during hypoxic apnea.
0

Circadian rhythms of macrophages are altered by the acidic pH of the tumor microenvironment

Amelia Clark et al.Feb 16, 2024
Macrophages are prime therapeutic targets due to their pro-tumorigenic and immunosuppressive functions in tumors, but the varying efficacy of therapeutic approaches targeting macrophages highlights our incomplete understanding of how the tumor microenvironment (TME) can influence regulation of macrophages. The circadian clock is a key internal regulator of macrophage function, but how circadian rhythms of macrophages may be influenced by the tumor microenvironment remains unknown. We found that conditions associated with the TME such as polarizing stimuli, acidic pH, and elevated lactate concentrations can each alter circadian rhythms in macrophages. Circadian rhythms were enhanced in pro-resolution macrophages but suppressed in pro-inflammatory macrophages, and acidic pH had divergent effects on circadian rhythms depending on macrophage phenotype. While cyclic AMP (cAMP) has been reported to play a role in macrophage response to acidic pH, our results indicate that pH-driven changes in circadian rhythms are not mediated solely by the cAMP signaling pathway. Remarkably, clock correlation distance analysis of tumor-associated macrophages (TAMs) revealed evidence of circadian disorder in TAMs. This is the first report providing evidence that circadian rhythms of macrophages are altered within the TME. Our data further suggest that heterogeneity in circadian rhythms at the population level may underlie this circadian disorder. Finally, we sought to determine how circadian regulation of macrophages impacts tumorigenesis, and found that tumor growth was suppressed when macrophages had a functional circadian clock. Our work demonstrates a novel mechanism by which the tumor microenvironment can influence macrophage biology through altering circadian rhythms, and the contribution of circadian rhythms in macrophages to suppressing tumor growth.