AM
Anita Monteverdi
Author with expertise in Analysis of Brain Functional Connectivity Networks
Fondazione Istituto Neurologico Nazionale Casimiro Mondino, University of Pavia, Urology Foundation
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
4
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

Non-linear frequency-dependence of neurovascular coupling in the cerebellar cortex implies vasodilation-vasoconstriction competition

Giuseppe Gagliano et al.Oct 24, 2023
+4
S
A
G
Abstract Neurovascular coupling (NVC) is the process associating local cerebral blood flow (CBF) to neuronal activity (NA). Although NVC provides the basis for the blood-oxygen-level-dependent (BOLD) effect used in functional MRI (fMRI), the relationship between NVC and NA is still unclear. Since recent studies reported cerebellar non-linearities in BOLD signals during motor tasks execution, we investigated the NVC/NA relationship using a range of input frequencies in acute mouse cerebellar slices of vermis and hemisphere. The capillary diameter increased in response to mossy fiber activation in the 6-300Hz range, with a marked inflection around 50Hz (vermis) and 100Hz (hemisphere). The corresponding NA was recorded using high-density multi-electrode arrays and correlated to capillary dynamics through a computational model dissecting the main components of granular layer activity. Here, NVC is known to involve a balance between the NMDAR-NO pathway driving vasodilation and the mGluRs-20HETE pathway driving vasoconstriction. Simulations showed that the NMDAR-mediated component of NA was sufficient to explain the time-course of the capillary dilation but not its non-linear frequency-dependence, suggesting that the mGluRs-20HETE pathway plays a role at intermediate frequencies. These parallel control pathways imply a vasodilation-vasoconstriction competition hypothesis that could adapt local hemodynamics at the microscale bearing implications for fMRI signals interpretation.
3

Design, implementation, and functional validation of a new generation of microneedle 3D high-density CMOS multi-electrode array for brain tissue and spheroids

Lisa Mapelli et al.Oct 24, 2023
+14
M
O
L
Abstract In the last decades, planar multi-electrode arrays (MEAs) have been widely used to record activity from in vitro neuronal cell cultures and tissue slices. Though successful, this technique bears some limitations, particularly relevant when applied to three-dimensional (3D) tissue, such as brain slices, spheroids or organoids. For example, planar MEAs signals are informative on just one side of a 3D-organized structure. This limits the interpretation of the results in terms of network functions in a complex structured and hyperconnected brain tissue. Moreover, the side in contact with the MEAs often shows lower oxygenation rates and related vitality issues. To overcome these problems, we empowered a CMOS high-density multi-electrode array (HD-MEA) with thousands of microneedles (μneedles) of 65-90 μm height, able to penetrate and record in-tissue signals, providing for the first time a 3D HD-MEA chip. We propose a CMOS-compatible fabrication process to produce arrays of μneedles of different widths mounted on large pedestals to create microchannels underneath the tissue. By using cerebellar and cortico-hippocampal slices as a model, we show that the μneedles efficiently penetrate the 3D tissue while the microchannels allow the flowing of maintenance solutions to increase tissue vitality in the recording sites. These improvements are reflected by the increase in electrodes sensing capabilities, the number of sampled neuronal units (compared to matched planar technology), and the efficiency of compound effects. Importantly, each electrode can also be used to stimulate the tissue with optimal efficiency due to the 3D structure. Furthermore, we demonstrate how the 3D HD-MEA can efficiently penetrate and get outstanding signals from in vitro 3D cellular models as brain spheroids. In conclusion, we describe a new recording device characterized by the highest spatio-temporal resolution reported for a 3D MEA and significant improvements in the quality of recordings, with a high signal-to-noise ratio and improved tissue vitality. The applications of this game-changing technique are countless, opening unprecedented possibilities in the neuroscience field and beyond.
3
Citation1
0
Save
5

Subject-specific features of excitation/inhibition profiles in neurodegenerative diseases

Anita Monteverdi et al.Oct 24, 2023
+7
A
F
A
Abstract Brain pathologies are based on microscopic changes in neurons and synapses that reverberate into large scale networks altering brain dynamics and functional states. An important yet unresolved issue concerns the impact of patients excitation/inhibition profiles on neurodegenerative diseases including Alzheimer’s disease, Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. In this work we used a simulation platform, The Virtual Brain, to simulate brain dynamics in healthy controls and in Alzheimer’s disease, Frontotemporal Dementia and Amyotrophic Lateral Sclerosis patients. The brain connectome and functional connectivity were extracted from 3T-MRI scans and The Virtual Brain nodes were represented by a Wong-Wang neural mass model endowing an explicit representation of the excitatory/inhibitory balance. The integration of cerebro-cerebellar loops improved the correlation between experimental and simulated functional connectivity, and hence The Virtual Brain predictive power, in all pathological conditions. The Virtual Brain biophysical parameters differed between clinical phenotypes, predicting higher global coupling and inhibition in Alzheimer’s disease and stronger NMDA (N-methyl-D-aspartate) receptor-dependent excitation in Amyotrophic Lateral Sclerosis. These physio-pathological parameters allowed an advanced analysis of patients’ state. In backward regressions, The Virtual Brain parameters significantly contributed to explain the variation of neuropsychological scores and, in discriminant analysis, the combination of The Virtual Brain parameters and neuropsychological scores significantly improved discriminative power between clinical conditions. Eventually, cluster analysis provided a unique description of the excitatory/inhibitory balance in individual patients. In aggregate, The Virtual Brain simulations reveal differences in the excitatory/inhibitory balance of individual patients that, combined with cognitive assessment, can promote the personalized diagnosis and therapy of neurodegenerative diseases.
0

Cerebellar control over inter-regional excitatory/inhibitory dynamics discriminates execution from observation of an action

Roberta Lorenzi et al.May 28, 2024
+5
A
G
R
The motor learning theory anticipates that cerebro-cerebellar loops perform sensorimotor prediction thereby regulating motor control. This operation has been identified during action execution (AE) and observation (AO) but the causal interaction between the cerebellum and cerebral cortex remained unclear. Here we used Dynamic Causal Modelling (DCM) to study functional MRI (fMRI) data obtained during a squeeze ball task in either the AE or AO conditions. In both cases, active regions included bilateral primary visual cortex (V1), left primary motor cortex (M1), left supplementary motor and premotor cortex (SMAPMC), left cingulate cortex (CC), left superior parietal lobule (SPL), and right cerebellum (CRBL). AE and AO networks showed the same fixed effective connectivity, with pathways between V1, CRBL, SMAPMC and CC wired in a closed loop. However, the cerebellar communication towards the cerebral cortex switched from excitatory in AE to inhibitory in AO. Moreover, in AE only, signal modulation was non-linear from SMAPMC to CRBL and within the CRBL self-connection, supporting the role of the CRBL in elaborating motor plans received from SMAPMC. Thus, the need for motor planning and the presence of a sensorimotor feedback in AE discriminate the modality of forward control operated by the CRBL on SMAPMC. While the underlying circuit mechanisms remain to be determined, these results reveal that the CRBL differentially controls the excitatory/inhibitory dynamics of inter-regional effective connectivity depending on its functional engagement, opening new prospective for the design of artificial sensorimotor controllers and for the investigation of neurological diseases.
5

Virtual brain simulations reveal network-specific parameters in neurodegenerative dementias

Anita Monteverdi et al.Oct 24, 2023
+14
M
F
A
Abstract Introduction Neural circuit alterations lay at the core of brain physiopathology, and yet are hard to unveil in living subjects. Virtual brain modelling (TVB), by exploiting structural and functional MRI, yields mesoscopic parameters of connectivity and synaptic transmission. Methods We used TVB to simulate brain networks, which are key for human brain function, in Alzheimer’s disease (AD) and Frontotemporal Dementia (FTD) patients, whose connectivity and synaptic parameters remain largely unknown; we then compared them to healthy controls, to reveal novel in vivo pathological hallmarks. Results The pattern of simulated parameter differed between AD and FTD, shedding light on disease-specific alterations in brain networks. Individual subjects displayed subtle differences in network parameter patterns that significantly correlated with their individual neuropsychological, clinical, and pharmacological profiles. Discussion These TVB simulations, by informing about a new personalized set of networks parameters, open new perspectives for understanding dementias mechanisms and design personalized therapeutic approaches.