SA
Saeko Akiyama
Author with expertise in Pancreatic Islet Dysfunction and Regeneration
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
0
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Human intestinal organoid-derived PDGFRα+ mesenchymal stroma empowers LGR4+ epithelial stem cells

Chen JunLong et al.Aug 18, 2023
Abstract The columnar epithelial cells comprising the intestinal tract, stomach, and uterus can be cultured in vitro as organoids or in adherent culture. However, the proliferation of these columnar epithelial cells in adherent culture is limited. Likewise, human pluripotent stem cell (hPSC)-derived intestinal epithelial cells do not show extensive or clonal propagation in vitro. In this study, we induced proliferation of hPSC-derived small intestinal epithelium for a longer time by utilizing mesenchymal stromal cells derived from self-organized intestinal organoids as feeders. The proliferating cells exhibited columnar form, microvilli and glycocalyx formation, and cell polarity, as well as expression of drug-metabolizing enzymes and transporters. It is noteworthy that small intestinal epithelial stem cells cannot be cultured in adherent culture alone, and the stromal cells cannot be replaced by other feeders. Organoid-derived mesenchymal stromal cells resemble the trophocytes essential for maintaining small intestinal epithelial stem cells, and play a crucial role in adherent culture. The high proliferative expansion, productivity, and functionality of hPSC-derived small intestinal epithelial stem cells could have potential applications in pharmacokinetic and toxicity studies and regenerative medicine.
0

Automated Xeno-Free Chondrogenic Differentiation from Human Embryonic Stem Cells: Enhancing Efficiency and Ensuring High-Quality Mass Production

JunLong Chen et al.May 21, 2024
Abstract Introduction Repairing damaged cartilage poses significant challenges, particularly in cases of congenital cartilage defects such as microtia or congenital tracheal stenosis, or as a consequence of traumatic injury, as the regenerative potential of cartilage is inherently limited. Stem cell therapy and tissue engineering offer promising approaches to overcome these limitations in cartilage healing. However, the challenge lies in the size of cartilage-containing organs, which necessitates a large quantity of cells to fill the damaged areas. Therefore, pluripotent stem cells that can proliferate indefinitely are highly desirable as a cell source. This study aims to delineate the differentiation conditions for cartilage derived from human embryonic stem cells (ESCs) and to develop an automated cell culture system to facilitate mass production for therapeutic applications. Methods Cartilage cell sheets were derived from human ESCs (SEES2, clinical trial-compatible line) by forming embryoid bodies (EBs) with either conventional manual culture or a benchtop multi-pipetter and an automated medium exchange integrated cell incubator, using xeno-free media. Cell sheets were implanted into the subcutaneous tissue of immunodeficient NOG mice to obtain cartilage tissue. The properties of cartilage tissues were examined by histological staining and quantitative PCR analysis. Results We have optimized an efficient xeno-free system for cartilage production with the conventional culture method and successfully transitioned to an automated system. Differentiated cartilage was histologically uniform with cartilage-specific elasticity and strength. The cartilage tissues were stained by alcian blue, safranin O, and toluidine blue, and quantitative PCR showed an increase in differentiation markers such as ACAN, COL2A1, and Vimentin. Automation significantly enhanced the efficiency of human ESC-derived chondrocyte differentiation. The number of constituent cells within EBs and the seeding density of EBs were identified as key factors influencing chondrogenic differentiation efficiency. By automating the process of chondrogenic differentiation, we achieved scalable production of chondrocytes. Conclusions By integrating the differentiation protocol with an automated cell culture system, there is potential to produce cartilage of sufficient size for clinical applications in humans. The resulting cartilage tissue holds promise for clinical use in repairing organs such as the trachea, joints, ears, and nose.
4

Drug metabolic activity as a selection factor for pluripotent stem cell-derived hepatic progenitor cells

Saeko Akiyama et al.Feb 21, 2023
ABSTRACT As a metabolic organ, the liver plays a variety of roles, including detoxification. It has been difficult to obtain stable supplies of hepatocytes for transplantation and for accurate hepatotoxicity determination in drug discovery research. Human pluripotent stem cells, capable of unlimited self-renewal, may be a promising source of hepatocytes. In order to develop a stable supply of embryonic stem cell (ESC)-derived hepatocytes, we have purified human ESC-derived hepatic progenitor cells with exposure to cytocidal puromycin by using their ability to metabolize drugs. Hepatic progenitor cells stably proliferated at least 2^20-fold over 120 days, maintaining hepatic progenitor cell-like properties. High drug-metabolizing hepatic progenitor cells can be matured into liver cells by suppressing hepatic proliferative signals. The method we developed enables the isolation and proliferation of functional hepatic progenitors from human ESCs, thereby providing a stable supply of high-quality cell resources at high efficiency. Cells produced by this method may facilitate cell therapy for hepatic diseases and reliable drug discovery research.
1

Hypothesis: Colony-forming activity of pluripotent stem cell-derived hepatocyte-like cells for stem cell assay

Kenta Ite et al.Nov 30, 2021
ABSTRACT Hepatocyte-like cells (HLCs) generated from human pluripotent stem cells (PSCs) exhibit hepatocytic properties in vitro; however, their engraftment and functionality in vivo remain unsatisfactory. Despite optimization of differentiation protocols, HLCs did not engraft in a mouse model of liver injury. In contrast, organ-derived hepatocytes reproducibly formed colonies in the liver injury mouse model. As an extension of the phenomenon observed in hematopoietic stem cells giving rise to colonies within the spleen, commonly referred to as “colony-forming units in spleen (CFU-s“, we hypothesize that “colony-forming units in liver (CFU-L)“ serves as a reliable indicator of stemness, engraftment, and functionality of hepatocytes. The uniform expression of the randomly inactivated gene in a single colony, as reported by Sugahara et al. 2022, suggests that the colonies generated by isolated hepatocytes likely originate from a single cell. We, therefore, propose that CFU-L can be used to quantify the number of “hepatocytes that engraft and proliferate in vivo“ as a quantitative assay for stem cells that utilize colony-forming ability, similar to that observed in hematopoietic stem cells.