MH
Mark Headley
Author with expertise in Mechanisms of Apoptotic Cell Clearance and Immune Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(83% Open Access)
Cited by:
2,841
h-index:
20
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors

Emma Lefrançais et al.Mar 21, 2017
Direct imaging of the lung microcirculation in mice indicates that it is a major site of mature platelet production from megakaryocytes. Platelets, which are essential for generating clots to stop bleeding, are produced to a large extent in the bone marrow, but indirect evidence points to a pulmonary contribution to their genesis. Emma Lefrançais et al. imaged microcirculation in the lungs of mice and report that the lung serves as a reservoir for haematopoietic progenitors and platelet-releasing megakaryocytes that can be recruited to compensate for bone marrow deficiencies. They estimate that the lung is responsible for around 50% of total platelet production in mice, a finding that positions it as an organ of notable haematopoietic potential. Platelets are critical for haemostasis, thrombosis, and inflammatory responses1,2, but the events that lead to mature platelet production remain incompletely understood3. The bone marrow has been proposed to be a major site of platelet production, although there is indirect evidence that the lungs might also contribute to platelet biogenesis4,5,6,7. Here, by directly imaging the lung microcirculation in mice8, we show that a large number of megakaryocytes circulate through the lungs, where they dynamically release platelets. Megakaryocytes that release platelets in the lungs originate from extrapulmonary sites such as the bone marrow; we observed large megakaryocytes migrating out of the bone marrow space. The contribution of the lungs to platelet biogenesis is substantial, accounting for approximately 50% of total platelet production or 10 million platelets per hour. Furthermore, we identified populations of mature and immature megakaryocytes along with haematopoietic progenitors in the extravascular spaces of the lungs. Under conditions of thrombocytopenia and relative stem cell deficiency in the bone marrow9, these progenitors can migrate out of the lungs, repopulate the bone marrow, completely reconstitute blood platelet counts, and contribute to multiple haematopoietic lineages. These results identify the lungs as a primary site of terminal platelet production and an organ with considerable haematopoietic potential.
0
Citation916
0
Save
0

TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation

Mark Siracusa et al.Aug 11, 2011
The cytokine thymic stromal lymphopoietin (TSLP) has been described as the master switch of allergic inflammation. Here, TSLP is shown to induce the development of basophils from bone-marrow progenitors and to activate peripheral basophils in an interleukin-3 (IL-3)-independent manner. Basophils elicited by TSLP differ from those dependent on IL-3 both phenotypically and functionally, and may play an important part in allergic diseases associated with T-helper type 2 cells. CD4+ T-helper type 2 (TH2) cells, characterized by their expression of interleukin (IL)-4, IL-5, IL-9 and IL-13, are required for immunity to helminth parasites1 and promote the pathological inflammation associated with asthma and allergic diseases2. Polymorphisms in the gene encoding the cytokine thymic stromal lymphopoietin (TSLP) are associated with the development of multiple allergic disorders in humans, indicating that TSLP is a critical regulator of TH2 cytokine-associated inflammatory diseases3,4,5,6. In support of genetic analyses, exaggerated TSLP production is associated with asthma, atopic dermatitis and food allergies in patients, and studies in murine systems demonstrated that TSLP promotes TH2 cytokine-mediated immunity and inflammation5,7,8,9,10,11,12. However, the mechanisms through which TSLP induces TH2 cytokine responses remain poorly defined. Here we demonstrate that TSLP promotes systemic basophilia, that disruption of TSLP–TSLPR interactions results in defective basophil responses, and that TSLPR-sufficient basophils can restore TH2-cell-dependent immunity in vivo. TSLP acted directly on bone-marrow-resident progenitors to promote basophil responses selectively. Critically, TSLP could elicit basophil responses in both IL-3–IL-3R-sufficient and -deficient environments, and genome-wide transcriptional profiling and functional analyses identified heterogeneity between TSLP-elicited versus IL-3-elicited basophils. Furthermore, activated human basophils expressed TSLPR, and basophils isolated from eosinophilic oesophagitis patients were distinct from classical basophils. Collectively, these studies identify previously unrecognized heterogeneity within the basophil cell lineage and indicate that expression of TSLP may influence susceptibility to multiple allergic diseases by regulating basophil haematopoiesis and eliciting a population of functionally distinct basophils that promote TH2 cytokine-mediated inflammation.
0
Citation478
0
Save
0

Visualization of immediate immune responses to pioneer metastatic cells in the lung

Mark Headley et al.Mar 15, 2016
Tracing the fate of circulating tumour cells by intravital two-photon lung imaging shows that tumours produce microparticles as they arrive and these migrate along the lung vasculature and are mostly taken up by interstitial myeloid cells, in a process that contributes to metastatic seeding; a minor subset of microparticles is engulfed by conventional dendritic cells, which are thought to contribute to the initiation of an anti-tumour immune response in lung-draining lymph nodes. The interaction between a tumour and the patient's immune system during the first minutes and hours of lung metastasis is a critical point in the evolution of a cancer. This study traces the fate of circulating tumour cells by intravital imaging and shows that tumour-derived microparticles migrate along the lung vasculature. Most are taken up by interstitial myeloid cells, a process which contributes to metastatic seeding. A minor subset of particles is engulfed by conventional dendritic cells and thought to contribute to the initiation of an anti-tumour immune response in draining lymph nodes. Lung metastasis is the lethal determinant in many cancers1,2 and a number of lines of evidence point to monocytes and macrophages having key roles in its development3,4,5. Yet little is known about the immediate fate of incoming tumour cells as they colonize this tissue, and even less known about how they make first contact with the immune system. Primary tumours liberate circulating tumour cells (CTCs) into the blood and we have developed a stable intravital two-photon lung imaging model in mice6 for direct observation of the arrival of CTCs and subsequent host interaction. Here we show dynamic generation of tumour microparticles in shear flow in the capillaries within minutes of CTC entry. Rather than dispersing under flow, many of these microparticles remain attached to the lung vasculature or independently migrate along the inner walls of vessels. Using fluorescent lineage reporters and flow cytometry, we observed ‘waves’ of distinct myeloid cell subsets that load differentially and sequentially with this CTC-derived material. Many of these tumour-ingesting myeloid cells collectively accumulated in the lung interstitium along with the successful metastatic cells and, as previously understood, promote the development of successful metastases from surviving tumour cells3. Although the numbers of these cells rise globally in the lung with metastatic exposure and ingesting myeloid cells undergo phenotypic changes associated with microparticle ingestion, a consistently sparse population of resident conventional dendritic cells, among the last cells to interact with CTCs, confer anti-metastatic protection. This work reveals that CTC fragmentation generates immune-interacting intermediates, and defines a competitive relationship between phagocyte populations for tumour loading during metastatic cell seeding.
0
Citation374
0
Save
0

Chimeric antigen receptors that trigger phagocytosis

Meghan Morrissey et al.May 7, 2018
Abstract Chimeric antigen receptors (CARs) are synthetic receptors that reprogram T cells to kill cancer. The success of CAR-T cell therapies highlights the promise of programmed immunity, and suggests that applying CAR strategies to other immune cell lineages may be beneficial. Here, we engineered a family of Chimeric Antigen Receptors for Phagocytosis (CAR-Ps) that direct macrophages to engulf specific targets, including cancer cells. CAR-Ps consist of an extracellular antibody fragment, which can be modified to direct CAR-P activity towards specific antigens. By screening a panel of engulfment receptor intracellular domains, we found that the cytosolic domains from Megf10 and FcRγ robustly triggered engulfment independently of their native extracellular domain. We show that CAR-Ps drive specific engulfment of antigen-coated synthetic particles and whole cancer cells. Addition of a tandem PI3K recruitment domain increased cancer cell engulfment. Finally, we show that CAR-P expressing macrophages reduce cancer cell number in co-culture by over 40%. Summary We report the first Chimeric Antigen Receptors for Phagocytosis (CAR-Ps) that promote engulfment of antigen-coated particles and cancer cells.
0
Citation10
0
Save
4

Integrin αvβ8 on T cells is responsible for suppression of anti-tumor immunity in multiple syngeneic models and is a promising target for tumor immunotherapy

Eswari Dodagatta-Marri et al.May 15, 2020
Abstract The αvβ8 integrin is a key activator of transforming growth factor β (TGF β), which has been shown to inhibit anti-tumor immunity. Previous work has suggested that αvβ8 on tumor cells could modulate tumor growth and responses to immune checkpoint blockade. We now show that a potent blocking monoclonal antibody against αvβ8 (ADWA-11) causes growth suppression or complete regression in syngeneic models of squamous cell carcinoma (CCK168), mammary cancer (EMT-6), colon cancer (CT26), and prostate cancer (TRAMPC2), especially when it is combined with other immunomodulators (anti-PD-1, anti-CTLA-4 or 4-1BB) or radiotherapy. αvβ8 is expressed on tumor cells in some of these models, but tumor cell expression of αvβ8 is not essential for the beneficial effects of ADWA-11 therapy. αvβ8 is consistently expressed at highest levels on CD4+CD25+ T cells within tumors, and specific deletion of Itgb8 from T cells is as effective as ADWA-11 in suppressing tumor growth. Treatment with ADWA-11 increases expression of a suite of genes in tumor infiltrating CD8+ T cells that are normally inhibited by TGFβ and are involved in tumor cell killing, including Granzyme B and Interferon-γ. These findings solidify αvβ8 integrin as a promising target for cancer immunotherapy, even for tumors that do not express this integrin.
4
Citation3
0
Save
Load More