LM
Lijun Ma
Author with expertise in Mechanisms of Plant Immune Response
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
28
(82% Open Access)
Cited by:
12,884
h-index:
46
/
i10-index:
95
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The genome sequence of the rice blast fungus Magnaporthe grisea

Ralph Dean et al.Apr 1, 2005
Magnaporthe grisea is the most destructive pathogen of rice worldwide and the principal model organism for elucidating the molecular basis of fungal disease of plants. Here, we report the draft sequence of the M. grisea genome. Analysis of the gene set provides an insight into the adaptations required by a fungus to cause disease. The genome encodes a large and diverse set of secreted proteins, including those defined by unusual carbohydrate-binding domains. This fungus also possesses an expanded family of G-protein-coupled receptors, several new virulence-associated genes and large suites of enzymes involved in secondary metabolism. Consistent with a role in fungal pathogenesis, the expression of several of these genes is upregulated during the early stages of infection-related development. The M. grisea genome has been subject to invasion and proliferation of active transposable elements, reflecting the clonal nature of this fungus imposed by widespread rice cultivation. The genome sequence of the most destructive pathogen of rice is now available. The rice blast fungus Magnaporthe grisea is the first fungal plant pathogen genome to be characterized, and with the rice genome already sequenced, it provides a unique opportunity to study the relationship between host and pathogen. Early findings include a family of novel G-protein-coupled receptors involved in disrupting host defences, a candidate target for fungicides specific for this pest. The genome has been invaded by other genetic elements in the past, probably contributing to rapid evolution when faced with newly introduced resistant rice varieties.
0
Citation1,580
0
Save
0

Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

Lijun Ma et al.Mar 1, 2010
Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective. Fungi of the genus Fusarium are important plant pathogens, causing various blights, root rots and wilts. While some species have a wide host range, others are more selective. Comparative genomics of three Fusarium fungi with broad and narrow host range, two newly sequenced, provide clues as to what drives these differences. Experimental follow-up shows that simply by mixing two strains on standard growth medium, transfer of two whole chromosomes from a Fusarium oxysporum tomato pathogen turns a nonpathogenic strain into a pathogenic one. These findings shed light on the evolution of host range and pathogenicity. Fungi from the genus Fusarium are important pathogens of animals and crop plants. Some have a wide host range, whereas others are more specific in the organisms they infect. Here, clues are provided as to how differences in specificity come about. The genomes of two Fusarium fungi with differing host ranges have been sequenced, and compared with the genome of a third species. Experiments show that transferring two whole chromosomes turns a non-pathogenic Fusarium strain into a pathogenic one.
0
Citation1,541
0
Save
0

Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans

Brian Haas et al.Sep 1, 2009
The genome of Phytophthora infestans, the pathogen that triggered the Irish potato famine in the nineteenth century, has been sequenced. It remains a devastating pathogen, with late blight destroying crops worth billions of dollars each year. Blight is difficult to control, in part because it adapts so quickly to genetically resistant potato strains. Comparison with two other Phytophthora genomes shows rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes induced during infection that have activities thought to alter host physiology. These fast evolving effector genes are found in highly dynamic and expanded regions of the genome, a factor that may contribute to its rapid adaptability to host plants. The P. infestans genome is the biggest so far sequenced, at about 240 megabases, with an extremely high repeat content of close to 75%. It is a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes related to organisms such as brown algae and diatoms. Phytophthora infestans is a fungus-like eukaryote and the most destructive pathogen of potato, with current annual worldwide potato crop losses due to late blight estimated at $6.7 billion. Here, the sequence of the P. infestans genome is reported. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of certain secreted disease effector proteins, probably explaining the rapid adaptability of the pathogen to host plants. Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement1. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world’s population1. Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion2. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars3,4. Here we report the sequence of the P. infestans genome, which at ∼240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for ∼74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
0
Citation1,416
0
Save
0

Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae

James Galagan et al.Dec 1, 2005
The aspergilli comprise a diverse group of filamentous fungi spanning over 200 million years of evolution. Here we report the genome sequence of the model organism Aspergillus nidulans, and a comparative study with Aspergillus fumigatus, a serious human pathogen, and Aspergillus oryzae, used in the production of sake, miso and soy sauce. Our analysis of genome structure provided a quantitative evaluation of forces driving long-term eukaryotic genome evolution. It also led to an experimentally validated model of mating-type locus evolution, suggesting the potential for sexual reproduction in A. fumigatus and A. oryzae. Our analysis of sequence conservation revealed over 5,000 non-coding regions actively conserved across all three species. Within these regions, we identified potential functional elements including a previously uncharacterized TPP riboswitch and motifs suggesting regulation in filamentous fungi by Puf family genes. We further obtained comparative and experimental evidence indicating widespread translational regulation by upstream open reading frames. These results enhance our understanding of these widely studied fungi as well as provide new insight into eukaryotic genome evolution and gene regulation. More than 300 labs worldwide are using the fungus Aspergillus nidulans as a model system for molecular genetics, and other species of this fungus are important in everyday life. A package of three genomics papers in this issue covers the Aspergillus field comprehensively. Galagan et al. report the genome sequence of the laboratory classic A. nidulans, and Nierman et al. have sequenced A. fumigatus, known chiefly as a human pathogen and allergen. And finally Machida et al. present genome sequencing and analysis of A. oryzae, focusing in particular on the expansion of genes in its genome, which is almost 25% bigger than the other two genomes. A. oryzae is used in traditional Chinese and Japanese food fermentation (think soy sauce) and also in enzyme production by biotechnologists.
0
Citation1,311
0
Save
0

Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis

Jörg Kämper et al.Nov 1, 2006
Ustilago maydis is an important fungal pathogen of maize, causing corn smut. It is well adapted to its host and proliferates in living plant tissue without inducing a defence response. The genome sequence of U. maydis has now been determined, the first for a biotrophic plant parasite. Several gene clusters that encode secreted proteins of unknown function were identified: genome-wide expression analysis shows that the clustered genes are upregulated during disease. Mutations in these gene clusters frequently affect virulence, ranging from complete loss of pathogenicity to hypervirulence. Ustilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant–microbe interactions1. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U. maydis belongs to the group of biotrophic parasites (the smuts) that depend on living tissue for proliferation and development2. Here we report the genome sequence for a member of this economically important group of biotrophic fungi. The 20.5-million-base U. maydis genome assembly contains 6,902 predicted protein-encoding genes and lacks pathogenicity signatures found in the genomes of aggressive pathogenic fungi, for example a battery of cell-wall-degrading enzymes. However, we detected unexpected genomic features responsible for the pathogenicity of this organism. Specifically, we found 12 clusters of genes encoding small secreted proteins with unknown function. A significant fraction of these genes exists in small gene families. Expression analysis showed that most of the genes contained in these clusters are regulated together and induced in infected tissue. Deletion of individual clusters altered the virulence of U. maydis in five cases, ranging from a complete lack of symptoms to hypervirulence. Despite years of research into the mechanism of pathogenicity in U. maydis, no ‘true’ virulence factors3 had been previously identified. Thus, the discovery of the secreted protein gene clusters and the functional demonstration of their decisive role in the infection process illuminate previously unknown mechanisms of pathogenicity operating in biotrophic fungi. Genomic analysis is, similarly, likely to open up new avenues for the discovery of virulence determinants in other pathogens.
0
Citation1,155
0
Save
0

Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses

Richard O’Connell et al.Aug 12, 2012
Richard O'Connell and colleagues report the genomes and transcriptomes of two Colletotrichum plant fungal pathogens. C. higginsianum infects Arabidopsis thaliana, and C. graminicola infects maize (Zea mays); comparative genomics in both species lead to molecular insights into the transition from biotrophic to necrotrophic life stages. Colletotrichum species are fungal pathogens that devastate crop plants worldwide. Host infection involves the differentiation of specialized cell types that are associated with penetration, growth inside living host cells (biotrophy) and tissue destruction (necrotrophy). We report here genome and transcriptome analyses of Colletotrichum higginsianum infecting Arabidopsis thaliana and Colletotrichum graminicola infecting maize. Comparative genomics showed that both fungi have large sets of pathogenicity-related genes, but families of genes encoding secreted effectors, pectin-degrading enzymes, secondary metabolism enzymes, transporters and peptidases are expanded in C. higginsianum. Genome-wide expression profiling revealed that these genes are transcribed in successive waves that are linked to pathogenic transitions: effectors and secondary metabolism enzymes are induced before penetration and during biotrophy, whereas most hydrolases and transporters are upregulated later, at the switch to necrotrophy. Our findings show that preinvasion perception of plant-derived signals substantially reprograms fungal gene expression and indicate previously unknown functions for particular fungal cell types.
0
Citation871
0
Save
0

Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum

Qiang Gao et al.Jan 6, 2011
Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains with customized properties.
0
Citation604
0
Save
0

Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens

Steven Klosterman et al.Jul 28, 2011
The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases.
0
Citation506
0
Save
Load More