CN
Caroline Nievergelt
Author with expertise in Genomic Studies and Association Analyses
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
7
h-index:
49
/
i10-index:
102
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
70

Tractor: A framework allowing for improved inclusion of admixed individuals in large-scale association studies

Elizabeth Atkinson et al.May 19, 2020
+11
C
K
E
Abstract Admixed populations are routinely excluded from medical genomic studies due to concerns over population structure. Here, we present a statistical framework and software package, Tractor, to facilitate the inclusion of admixed individuals in association studies by leveraging local ancestry. We test Tractor with simulations and empirical data focused on admixed African-European individuals. Tractor generates ancestryspecific effect size estimates, can boost GWAS power, and improves the resolution of association signals. Using a local ancestry aware regression model, we replicate known hits for blood lipids in admixed populations, discover novel hits missed by standard GWAS procedures, and localize signals closer to putative causal variants.
70
Citation6
0
Save
17

Genomic Structural Equation Modeling Reveals Latent Phenotypes in the Human Cortex with Distinct Genetic Architecture

Rajendra Morey et al.Nov 8, 2022
+17
A
C
R
ABSTRACT Genetic contributions to human cortical structure manifest pervasive pleiotropy. This pleiotropy may be harnessed to identify unique genetically-informed parcellations of the cortex that are neurobiologically distinct from anatomical, functional, cytoarchitectural, or other cortical parcellation schemes. We investigated genetic pleiotropy by applying genomic structural equation modeling (SEM) to model the genetic architecture of cortical surface area (SA) and cortical thickness (CT) of 34 brain regions recently reported in the ENIGMA cortical GWAS. Genomic SEM uses the empirical genetic covariance estimated from GWAS summary statistics with LD score regression (LDSC) to discover factors underlying genetic covariance. Genomic SEM can fit a multivariate GWAS from summary statistics, which can subsequently be used for LD score regression (LDSC). We found the best-fitting model of cortical SA was explained by 6 latent factors and CT was explained by 4 latent factors. The multivariate GWAS of these latent factors identified 74 genome-wide significant (GWS) loci (p<5×10 −8 ), including many previously implicated in neuroimaging phenotypes, behavioral traits, and psychiatric conditions. LDSC of latent factor GWAS results found that SA-derived factors had a positive genetic correlation with bipolar disorder (BPD), and major depressive disorder (MDD), and a negative genetic correlation with attention deficit hyperactivity disorder (ADHD), MDD, and insomnia, while CT factors displayed a negative genetic correlation with alcohol dependence. Jointly modeling the genetic architecture of complex traits and investigating multivariate genetic links across phenotypes offers a new vantage point for mapping genetically informed cortical networks. HIGHLIGHTS Genomic SEM can examine genetic correlation across cortical regions. We inferred regional genetic networks of cortical thickness and surface area. Network-associated variants have been implicated in multiple traits. These networks are genetically correlated with several psychiatric disorders including MDD, bipolar, ADHD, and alcohol dependence.
17
Citation1
0
Save
0

Largest genome-wide association study for PTSD identifies genetic risk loci in European and African ancestries and implicates novel biological pathways

Caroline Nievergelt et al.Nov 1, 2018
+178
E
T
C
Post-traumatic stress disorder (PTSD) is a common and debilitating disorder. The risk of PTSD following trauma is heritable, but robust common variants have yet to be identified by genome-wide association studies (GWAS). We have collected a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls. We first demonstrate significant genetic correlations across 60 PTSD cohorts to evaluate the comparability of these phenotypically heterogeneous studies. In this largest GWAS meta-analysis of PTSD to date we identify a total of 6 genome-wide significant loci, 4 in European and 2 in African-ancestry analyses. Follow-up analyses incorporated local ancestry and sex-specific effects, and functional studies. Along with other novel genes, a non-coding RNA (ncRNA) and a Parkinson's Disease gene, PARK2, were associated with PTSD. Consistent with previous reports, SNP-based heritability estimates for PTSD range between 10-20%. Despite a significant shared liability between PTSD and major depressive disorder, we show evidence that some of our loci may be specific to PTSD. These results demonstrate the role of genetic variation contributing to the biology of differential risk for PTSD and the necessity of expanding GWAS beyond European ancestry.
0

Genomic dissection of bipolar disorder and schizophrenia including 28 subphenotypes

Douglas Ruderfer et al.Aug 8, 2017
+541
A
S
D
Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable disorders that share a significant proportion of common risk variation. Understanding the genetic factors underlying the specific symptoms of these disorders will be crucial for improving diagnosis, intervention and treatment. In case-control data consisting of 53,555 cases (20,129 BD, 33,426 SCZ) and 54,065 controls, we identified 114 genome-wide significant loci (GWS) when comparing all cases to controls, of which 41 represented novel findings. Two genome-wide significant loci were identified when comparing SCZ to BD and a third was found when directly incorporating functional information. Regional joint association identified a genomic region of overlapping association in BD and SCZ with disease-independent causal variants indicating a fourth region contributing to differences between these disorders. Regional SNP-heritability analyses demonstrated that the estimated heritability of BD based on the SCZ GWS regions was significantly higher than that based on the average genomic region (91 regions, p = 1.2x10-6) while the inverse was not significant (19 regions, p=0.89). Using our BD and SCZ GWAS we calculated polygenic risk scores and identified several significant correlations with: 1) SCZ subphenotypes: negative symptoms (SCZ, p=3.6x10-6) and manic symptoms (BD, p=2x10-5), 2) BD subphenotypes: psychotic features (SCZ p=1.2x10-10, BD p=5.3x10-5) and age of onset (SCZ p=7.9x10-4). Finally, we show that psychotic features in BD has significant SNP-heritability (h2snp=0.15, SE=0.06), and a significant genetic correlation with SCZ (rg=0.34) in addition there is a significant sign test result between SCZ GWAS and a GWAS of BD cases contrasting those with and without psychotic features (p=0.0038, one-side binomial test). For the first time, we have identified specific loci pointing to a potential role of 4 genes (DARS2, ARFGEF2, DCAKD and GATAD2A) that distinguish between BD and SCZ, providing an opportunity to understand the biology contributing to clinical differences of these disorders. Our results provide the best evidence so far of genomic components distinguishing between BD and SCZ that contribute directly to specific symptom dimensions.
0

Analysis of Genetically Regulated Gene Expression identifies a trauma type specific PTSD gene, SNRNP35

Laura Huckins et al.Mar 19, 2019
+40
S
Y
L
PTSD has significant genetic heritability; however, it is unclear how genetic risk influences tissue-specific gene expression. We used brain and non-brain transcriptomic imputation models to impute genetically regulated gene expression (GReX) in 9,087 PTSD-cases and 23,811 controls and identified thirteen significant GReX-PTSD associations. The results suggest substantial genetic heterogeneity between civilian and military PTSD cohorts. The top study-wide significant PTSD-association was with predicted downregulation of the Small Nuclear Ribonucleoprotein U11/U12 Subunit 35 (SNRNP35) in the BA9 region of the prefrontal cortex (PFC) in military cohorts. In peripheral leukocytes from 175 U.S. Marines, the observed PTSD differential gene expression correlated with the predicted blood GReX differences for these individuals, and deployment stress downregulated SNRNP35 expression, primarily in Marines with post-deployment PTSD. SNRNP35 is a subunit of the minor spliceosome complex and SNRNP35 knockdown in cells validated its functional importance in U12-intron splicing. Finally, mimicking acute activation of the endogenous stress axis in mice downregulated PFC Snrnp35 expression.