MG
Melanie Garrett
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(43% Open Access)
Cited by:
25
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genetic Determinants of Cortical Structure (Thickness, Surface Area and Volumes) among Disease Free Adults in the CHARGE Consortium

Ivana Kolčić et al.Sep 9, 2018
Abstract Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,822 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 161 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.
0
Citation24
0
Save
17

Genomic Structural Equation Modeling Reveals Latent Phenotypes in the Human Cortex with Distinct Genetic Architecture

Rajendra Morey et al.Nov 8, 2022
ABSTRACT Genetic contributions to human cortical structure manifest pervasive pleiotropy. This pleiotropy may be harnessed to identify unique genetically-informed parcellations of the cortex that are neurobiologically distinct from anatomical, functional, cytoarchitectural, or other cortical parcellation schemes. We investigated genetic pleiotropy by applying genomic structural equation modeling (SEM) to model the genetic architecture of cortical surface area (SA) and cortical thickness (CT) of 34 brain regions recently reported in the ENIGMA cortical GWAS. Genomic SEM uses the empirical genetic covariance estimated from GWAS summary statistics with LD score regression (LDSC) to discover factors underlying genetic covariance. Genomic SEM can fit a multivariate GWAS from summary statistics, which can subsequently be used for LD score regression (LDSC). We found the best-fitting model of cortical SA was explained by 6 latent factors and CT was explained by 4 latent factors. The multivariate GWAS of these latent factors identified 74 genome-wide significant (GWS) loci (p<5×10 −8 ), including many previously implicated in neuroimaging phenotypes, behavioral traits, and psychiatric conditions. LDSC of latent factor GWAS results found that SA-derived factors had a positive genetic correlation with bipolar disorder (BPD), and major depressive disorder (MDD), and a negative genetic correlation with attention deficit hyperactivity disorder (ADHD), MDD, and insomnia, while CT factors displayed a negative genetic correlation with alcohol dependence. Jointly modeling the genetic architecture of complex traits and investigating multivariate genetic links across phenotypes offers a new vantage point for mapping genetically informed cortical networks. HIGHLIGHTS Genomic SEM can examine genetic correlation across cortical regions. We inferred regional genetic networks of cortical thickness and surface area. Network-associated variants have been implicated in multiple traits. These networks are genetically correlated with several psychiatric disorders including MDD, bipolar, ADHD, and alcohol dependence.
17
Citation1
0
Save
0

Largest genome-wide association study for PTSD identifies genetic risk loci in European and African ancestries and implicates novel biological pathways

Caroline Nievergelt et al.Nov 1, 2018
Post-traumatic stress disorder (PTSD) is a common and debilitating disorder. The risk of PTSD following trauma is heritable, but robust common variants have yet to be identified by genome-wide association studies (GWAS). We have collected a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls. We first demonstrate significant genetic correlations across 60 PTSD cohorts to evaluate the comparability of these phenotypically heterogeneous studies. In this largest GWAS meta-analysis of PTSD to date we identify a total of 6 genome-wide significant loci, 4 in European and 2 in African-ancestry analyses. Follow-up analyses incorporated local ancestry and sex-specific effects, and functional studies. Along with other novel genes, a non-coding RNA (ncRNA) and a Parkinson's Disease gene, PARK2, were associated with PTSD. Consistent with previous reports, SNP-based heritability estimates for PTSD range between 10-20%. Despite a significant shared liability between PTSD and major depressive disorder, we show evidence that some of our loci may be specific to PTSD. These results demonstrate the role of genetic variation contributing to the biology of differential risk for PTSD and the necessity of expanding GWAS beyond European ancestry.
0

Novel genetic determinants of telomere length from a multi-ethnic analysis of 75,000 whole genome sequences in TOPMed

Margaret Taub et al.Sep 4, 2019
Telomeres shorten in replicating somatic cells and with age; in human leukocytes, telomere length (TL) is associated with a host of aging-related diseases. To date, 16 genome-wide association studies (GWAS) have identified twenty-three loci associated with leukocyte TL, but prior studies were primarily in individuals of European and Asian ancestry and relied on laboratory assays including Southern Blot and qPCR to quantify TL. Here, we estimated TL bioinformatically, leveraging whole genome sequencing (WGS) of whole blood from n=75,176 subjects in the Trans-Omics for Precision Medicine (TOPMed) Program. We performed the largest multi-ethnic and only WGS-based genome-wide association analysis of TL to date. We identified 22 associated loci (p-value <5x10-8), including 10 novel loci. Three of the novel loci map to genes involved in telomere maintenance and/or DNA damage repair: TERF2, RFWD3, and SAMHD1. Many of the 99 pathways identified in gene set enrichment analysis for the 22 loci (multiple-testing corrected false discovery rate (FDR) <0.05) pertain to telomere biology, including the top five (FDR<1x10-9). Importantly, several loci, including the recently identified TINF2 and ATM loci, showed strong ancestry-specific associations.
0

Planar cell polarity pathway and development of the human visual cortex

Jean Shin et al.Aug 31, 2018
The radial unit hypothesis provides a framework for global (proliferation) and regional (distribution) expansion of the primate cerebral cortex. Using principal component analysis (PCA), we have identified cortical regions with shared variance in their surface area and cortical thickness, respectively, segmented from magnetic resonance images obtained in 23,800 participants. We then carried out meta-analyses of genome-wide association studies of the first two principal components for each phenotype. For surface area (but not cortical thickness), we have detected strong associations between each of the components and single nucleotide polymorphisms in a number of gene loci. The first (global) component was associated mainly with loci on chromosome 17 (9.5e-32 ≤ p ≤ 2.8e-10), including those detected previously as linked with intracranial volume and/or general cognitive function. The second (regional) component captured shared variation in the surface area of the primary and adjacent secondary visual cortices and showed a robust association with polymorphisms in a locus on chromosome 14 containing Disheveled Associated Activator of Morphogenesis 1 ( DAAM1 ; p =2.4e-34). DAAM1 is a key component in the planar-cell-polarity signaling pathway. In follow-up studies, we have focused on the latter finding and established that: (1) DAAM1 is highly expressed between 12th and 22nd post-conception weeks in the human cerebral cortex; (2) genes co-expressed with DAAM1 in the primary visual cortex are enriched in mitochondria-related pathways; and (3) volume of the lateral geniculate nucleus, which projects to regions of the visual cortex staining for cytochrome oxidase (a mitochondrial enzyme), correlates with the surface area of the visual cortex in major-allele homozygotes but not in carriers of the minor allele. Altogether, we speculate that, in concert with thalamocortical input to cortical subplate, DAAM1 enables migration of neurons to cytochrome-oxidase rich regions of the visual cortex, and, in turn, facilitates regional expansion of this set of cortical regions during development.
3

Gene-metabolite annotation with shortest reactional distance enhances metabolite genome-wide association studies results

Cantin Baron et al.Mar 24, 2023
Studies combining metabolomics and genetics, known as metabolite genome-wide association studies (mGWAS), have provided valuable insights into our understanding of the genetic control of metabolite levels. However, the biological interpretation of these associations remains challenging due to a lack of existing tools to annotate mGWAS gene-metabolite pairs beyond the use of conservative statistical significance threshold. Here, we computed the shortest reactional distance (SRD) based on the curated knowledge of the KEGG database to explore its utility in enhancing the biological interpretation of results from three independent mGWAS, including a case study on sickle cell disease patients. Results show that, in reported mGWAS pairs, there is an excess of small SRD values and that SRD values and p-values significantly correlate, even beyond the standard conservative thresholds. The added-value of SRD annotation is shown for identification of potential false negative hits, exemplified by the finding of gene-metabolite associations with SRD ≤1 that did not reach standard genome-wide significance cut-off. The wider use of this statistic as an mGWAS annotation would prevent the exclusion of biologically relevant associations and can also identify errors or gaps in current metabolic pathway databases. Our findings highlight the SRD metric as an objective, quantitative and easy-to-compute annotation for gene-metabolite pairs that can be used to integrate statistical evidence to biological networks.