CT
Casey Thornton
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
13
h-index:
6
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Spatially mapped single-cell chromatin accessibility

Casey Thornton et al.Oct 22, 2019
+10
A
R
C
Abstract High-throughput single-cell epigenomic assays can resolve the heterogeneity of cell types and states in complex tissues, however, spatial orientation within the network of interconnected cells is lost. Here, we present a novel method for highly scalable, spatially resolved, single-cell profiling of chromatin states. We use high-density multiregional sampling to perform single-cell combinatorial indexing on Microbiopsies Assigned to Positions for the Assay for Transposase Accessible Chromatin (sciMAP-ATAC) to produce single-cell data of an equivalent quality to non-spatially resolved single-cell ATAC-seq, where each cell is localized to a three-dimensional position within the tissue. A typical experiment comprises between 96 and 384 spatially mapped tissue positions, each producing 10s to over 100 individual single-cell ATAC-seq profiles, and a typical resolution of 214 cubic microns; with the ability to tune the resolution and cell throughput to suit each target application. We apply sciMAP-ATAC to the adult mouse primary somatosensory cortex, where we profile cortical lamination and demonstrate the ability to analyze data from a single tissue position or compare a single cell type in adjacent positions. We also profile the human primary visual cortex, where we produce spatial trajectories through the cortex. Finally, we characterize the spatially progressive nature of cerebral ischemic infarct in the mouse brain using a model of transient middle cerebral artery occlusion. We leverage the spatial information to identify novel and known transcription factor activities that vary by proximity to the ischemic infarction core with cell type specificity.
0
Citation9
0
Save
1

High-content single-cell combinatorial indexing

Ryan Mulqueen et al.Jan 12, 2021
+8
D
F
R
Abstract Single-cell genomics assays have emerged as a dominant platform for interrogating complex biological systems. Methods to capture various properties at the single-cell level typically suffer a tradeoff between cell count and information content, which is defined by the number of unique and usable reads acquired per cell. We and others have described workflows that utilize single-cell combinatorial indexing (sci) 1 , leveraging transposase-based library construction 2 to assess a variety of genomic properties in high throughput; however, these techniques often produce sparse coverage for the property of interest. Here, we describe a novel adaptor-switching strategy, ‘s3’, capable of producing one-to-two order-of-magnitude improvements in usable reads obtained per cell for chromatin accessibility (s3-ATAC), whole genome sequencing (s3-WGS), and whole genome plus chromatin conformation (s3-GCC), while retaining the same high-throughput capabilities of predecessor ‘sci’ technologies. We apply s3 to produce high-coverage single-cell ATAC-seq profiles of mouse brain and human cortex tissue; and whole genome and chromatin contact maps for two low-passage patient-derived cell lines from a primary pancreatic tumor.
1
Citation4
0
Save
0

Improved single-cell ATAC-seq reveals chromatin dynamics of in vitro corticogenesis

Ryan Mulqueen et al.May 15, 2019
+9
C
B
R
Development is a complex process that requires the precise modulation of regulatory gene networks controlled through dynamic changes in the epigenome. Single-cell -omic technologies provide an avenue for understanding the mechanisms of these processes by capturing the progression of epigenetic cell states during the course of cellular differentiation using in vitro or in vivo models. However, current single-cell epigenomic methods are limited in the information garnered per individual cell, which in turn limits their ability to measure chromatin dynamics and state shifts. Single-cell combinatorial indexing (sci-) has been applied as a strategy for identifying single-cell -omic originating libraries and removes the necessity of single-cell, single-compartment chemistry. Here, we report an improved sci- assay for transposase accessible chromatin by sequencing (ATAC-seq), which utilizes the small molecule inhibitor Pitstop 2 (scip-ATAC-seq). We demonstrate that these improvements, which theoretically could be applied to any in situ transposition method for single-cell library preparation, significantly increase the ability of transposase to enter the nucleus and generate highly complex single-cell libraries, without altering biological signal. We applied sci-ATAC-seq and scip-ATAC-seq to characterize the chromatin dynamics of developing forebrain-like organoids, an in vitro model of human corticogenesis. Using these data, we characterized novel putative regulatory elements, compared the epigenome of the organoid model to human cortex data, generated a high-resolution pseudotemporal map of chromatin accessibility through differentiation, and measured epigenomic changes coinciding with a neurogenic fate decision point. Finally, we combined transcription factor motif accessibility with gene activity (GA) scores to directly observe the dynamics of complex regulatory programs that regulate neurogenesis through developmental pseudotime. Overall, scip-ATAC-seq increases information content per cell and bolsters the potential for future single-cell studies into complex developmental processes.
35

Cas12a-Capture: a novel, low-cost, and scalable method for targeted sequencing

Taylor Mighell et al.Nov 20, 2020
+6
B
A
T
Abstract Targeted sequencing remains a valuable technique for clinical and research applications. However, many existing technologies suffer from pervasive GC sequence content bias, high input DNA requirements, and high cost for custom panels. We have developed Cas12a-Capture, a low-cost and highly scalable method for targeted sequencing. The method utilizes preprogramed guide RNAs to direct CRISPR-Cas12a cleavage of double stranded DNA in vitro and then takes advantage of the resulting four to five nucleotide overhangs for selective ligation with a custom sequencing adapter. Addition of a second sequencing adapter and enrichment for ligation products generates a targeted sequence library. We first performed a pilot experiment with 7,176 guides targeting 3.5 megabases of DNA. Using these data, we modeled the sequence determinants of Cas12a-Capture efficiency, then designed an optimized set of 11,438 guides targeting 3.0 megabases. The optimized guide set achieves an average 64-fold enrichment of targeted regions with minimal GC bias. Cas12a-Capture variant calls had strong concordance with Illumina Platinum Genome calls, especially for SNVs, which could be improved by applying basic variant quality heuristics. We believe Cas12a-Capture has a wide variety of potential clinical and research applications and is amendable for selective enrichment for any double stranded DNA template or genome.