RM
Rǎzvan Marinescu
Author with expertise in Mechanisms of Alzheimer's Disease
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
667
h-index:
13
/
i10-index:
17
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference

Alexandra Young et al.Oct 9, 2018
The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique-Subtype and Stage Inference (SuStaIn)-able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer's disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 × 10-4) or temporal stage (p = 3.96 × 10-5). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine.
1
Citation354
0
Save
1

Progression of regional grey matter atrophy in multiple sclerosis

Arman Eshaghi et al.Mar 16, 2018
See Stankoff and Louapre (doi:10.1093/brain/awy114) for a scientific commentary on this article. Grey matter atrophy is present from the earliest stages of multiple sclerosis, but its temporal ordering is poorly understood. We aimed to determine the sequence in which grey matter regions become atrophic in multiple sclerosis and its association with disability accumulation. In this longitudinal study, we included 1417 subjects: 253 with clinically isolated syndrome, 708 with relapsing-remitting multiple sclerosis, 128 with secondary-progressive multiple sclerosis, 125 with primary-progressive multiple sclerosis, and 203 healthy control subjects from seven European centres. Subjects underwent repeated MRI (total number of scans 3604); the mean follow-up for patients was 2.41 years (standard deviation = 1.97). Disability was scored using the Expanded Disability Status Scale. We calculated the volume of brain grey matter regions and brainstem using an unbiased within-subject template and used an established data-driven event-based model to determine the sequence of occurrence of atrophy and its uncertainty. We assigned each subject to a specific event-based model stage, based on the number of their atrophic regions. Linear mixed-effects models were used to explore associations between the rate of increase in event-based model stages, and T2 lesion load, disease-modifying treatments, comorbidity, disease duration and disability accumulation. The first regions to become atrophic in patients with clinically isolated syndrome and relapse-onset multiple sclerosis were the posterior cingulate cortex and precuneus, followed by the middle cingulate cortex, brainstem and thalamus. A similar sequence of atrophy was detected in primary-progressive multiple sclerosis with the involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in relapse-onset multiple sclerosis and late atrophy in primary-progressive multiple sclerosis. Patients with secondary-progressive multiple sclerosis showed the highest event-based model stage (the highest number of atrophic regions, P < 0.001) at the study entry. All multiple sclerosis phenotypes, but clinically isolated syndrome, showed a faster rate of increase in the event-based model stage than healthy controls. T2 lesion load and disease duration in all patients were associated with increased event-based model stage, but no effects of disease-modifying treatments and comorbidity on event-based model stage were observed. The annualized rate of event-based model stage was associated with the disability accumulation in relapsing-remitting multiple sclerosis, independent of disease duration (P < 0.0001). The data-driven staging of atrophy progression in a large multiple sclerosis sample demonstrates that grey matter atrophy spreads to involve more regions over time. The sequence in which regions become atrophic is reasonably consistent across multiple sclerosis phenotypes. The spread of atrophy was associated with disease duration and with disability accumulation over time in relapsing-remitting multiple sclerosis.
0

Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference

Alexandra Young et al.Dec 21, 2017
The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we present a new machine learning technique - Subtype and Stage Inference (SuStaIn) - able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal new subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes, and characterises within-group heterogeneity for the first time. In Alzheimer's disease, SuStaIn uncovers three subtypes, uniquely revealing their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p=7.18×10-4) or temporal stage (p=3.96×10-5). SuStaIn thus offers new promise for enabling disease subtype discovery and precision medicine.
0

Progression of regional grey matter atrophy in multiple sclerosis

Arman Eshaghi et al.Sep 19, 2017
Grey matter atrophy is present from the earliest clinical stages of multiple sclerosis (MS), but the temporal ordering is poorly understood. We aimed to determine the sequence in which grey matter regions become atrophic in MS, and its association with disability accumulation. In this longitudinal study, we included 1,417 subjects: 253 with clinically-isolated syndrome (CIS), 708 relapsing-remitting MS (RRMS), 128 secondary-progressive MS (SPMS), 125 primary-progressive MS (PPMS), and 203 healthy controls from 7 European centres. Subjects underwent repeated MRI scanning (total number of scans 3,604); the mean follow-up for patients was 2.41yrs (SD1.97). Disability was scored using the Expanded Disability Status Scale (EDSS). We calculated the volume of brain grey matter regions and brainstem using an unbiased within-subject template. We used an established data-driven event-based model (EBM) to determine the sequence of occurrence of atrophy and its uncertainty. We assigned each subject to a specific EBM stage, based on the number of their atrophic regions. We used nested linear mixed-effects regression models to explore the associations between the rate of increase in the EBM stages over time, disease duration and annual rate of EDSS gain. The first regions to become atrophic in CIS and relapse-onset MS patients (RRMS and SPMS) were the posterior cingulate cortex and precuneus, followed by the middle cingulate cortex, brainstem and thalamus. The sequence of atrophy in PPMS showed a similar involvement of the thalamus, cuneus, precuneus, and pallidum, followed by the brainstem and posterior cingulate cortex. The cerebellum, caudate and putamen showed early atrophy in relapse-onset MS and late atrophy in PPMS. Patients with SPMS showed the highest EBM stages (highest number of atrophic regions, all p<0.001) at study entry. Rates of increase in EBM stages were significantly different from healthy controls in all MS phenotypes, except for CIS. The increase in the number of atrophic regions (EBM stage) was associated with disease duration in all patients. EBM stage was associated with disability accumulation in RRMS independent of disease duration (p<0.0001). This data-driven staging of atrophy progression in a large MS sample demonstrates that grey matter atrophy spreads to involve more regions over time. The sequence in which regions become atrophic is reasonably consistent across MS phenotypes. The spread of atrophy was associated with disease duration, and disability accumulation in RRMS.
0

SQUAT: Stateful Quantization-Aware Training in Recurrent Spiking Neural Networks

Sreyes Venkatesh et al.Apr 23, 2024
Weight quantization is used to deploy high-performance deep learning models on resource-limited hardware, enabling the use of low-precision integers for storage and computation. Spiking neural networks (SNNs) share the goal of enhancing efficiency, but adopt an 'event-driven' approach to reduce the power consumption of neural network inference. While extensive research has focused on weight quantization, quantization-aware training (QAT), and their application to SNNs, the precision reduction of state variables during training has been largely overlooked, potentially diminishing inference performance. This paper introduces two QAT schemes for stateful neurons: (i) a uniform quantization strategy, an established method for weight quantization, and (ii) threshold-centered quantization, which allocates exponentially more quantization levels near the firing threshold. Our results show that increasing the density of quantization levels around the firing threshold improves accuracy across several benchmark datasets. We provide an ablation analysis of the effects of weight and state quantization, both individually and combined, and how they impact models. Our comprehensive empirical evaluation includes full precision, 8-bit, 4-bit, and 2-bit quantized SNNs, using QAT, stateful QAT (SQUAT), and post-training quantization methods. The findings indicate that the combination of QAT and SQUAT enhance performance the most, but given the choice of one or the other, QAT improves performance by the larger degree. These trends are consistent all datasets. Our methods have been made available in our Python library snnTorch: https://github.com/jeshraghian/snntorch.
21

MRI Radiomic Signature of White Matter Hyperintensities Is Associated with Clinical Phenotypes

Martin Bretzner et al.Jan 26, 2021
Abstract Introduction Neuroimaging measurements of brain structural integrity are thought to be surrogates for brain health, but precise assessments require dedicated advanced image acquisitions. By means of describing the texture of conventional images beyond what meets the naked eye, radiomic analyses hold potential for evaluating brain health. We sought to: 1) evaluate this novel approach to assess brain structural integrity by predicting white matter hyperintensities burdens (WMH) and 2) uncover associations between predictive radiomic features and patients’ clinical phenotypes. Methods Our analyses were based on a multi-site cohort of 4,163 acute ischemic strokes (AIS) patients with T2-FLAIR MR images and corresponding deep-learning-generated total brain and WMH segmentation. Radiomic features were extracted from normal-appearing brain tissue (brain mask–WMH mask). Radiomics-based prediction of personalized WMH burden was done using ElasticNet linear regression. We built a radiomic signature of WMH with the most stable selected features predictive of WMH burden and then related this signature to clinical variables (age, sex, hypertension (HTN), atrial fibrillation (AF), diabetes mellitus (DM), coronary artery disease (CAD), and history of smoking) using canonical correlation analysis. Results Radiomic features were highly predictive of WMH burden (R 2 =0.855±0.011). Seven pairs of canonical variates (CV) significantly correlated the radiomics signature of WMH and clinical traits with respective canonical correlations of 0.81, 0.65, 0.42, 0.24, 0.20, 0.15, and 0.15 (FDR-corrected p-values CV1-6 <.001, p-value CV7 =.012). The clinical CV1 was mainly influenced by age, CV2 by sex, CV3 by history of smoking and DM, CV4 by HTN, CV5 by AF and DM, CV6 by CAD, and CV7 by CAD and DM. Conclusion Radiomics extracted from T2-FLAIR images of AIS patients capture microstructural damage of the cerebral parenchyma and correlate with clinical phenotypes. Further research could evaluate radiomics to predict the progression of WMH. Research in context Evidence before this study We did a systematic review on PubMed until December 1, 2020, for original articles and reviews in which radiomics were used to characterize stroke or cerebrovascular diseases. Radiomic analyses cover a broad ensemble of high-throughput quantification methods applicable to digitalized medical images that extract high-dimensional data by describing a given region of interest by its size, shape, histogram, and relationship between voxels. We used the search terms “radiomics” or “texture analysis”, and “stroke”, “cerebrovascular disease”, “small vessel disease”, or “white matter hyperintensities”. Our research identified 24 studies, 18 studying radiomics of stroke lesions and 6 studying cerebrovascular diseases. All the latter six studies were based on MRI (T1-FLAIR, dynamic contrast-enhanced imaging, T1 & T2-FLAIR, T2-FLAIR post-contrast, T2-FLAIR, and T2-TSE images). Four studies were describing small vessel disease, and two were predicting longitudinal progression of WMH. The average sample size was small with 96 patients included (maximum: 204). One study on 141 patients identified 7 T1-FLAIR radiomic features correlated with cardiovascular risk factors (age and hyperlipidemia) using univariate correlations. All studies were monocentric and performed on a single MRI scanner. Added value of this study To date and to the best of our knowledge, this is the largest radiomics study performed on cerebrovascular disease or any topic, and one of the very few to include a great diversity of participating sites with diverse clinical MRI scanners. This study is the first one to establish a radiomic signature of WMH and to interpret its relationship with common cardiovascular risk factors. Our findings add to the body of evidence that damage caused by small vessel disease extend beyond the visible white matter hyperintensities, but the added value resides in the detection of that subvisible damage on routinely acquired T2-FLAIR imaging. It also suggests that cardiovascular phenotypes might manifest in distinct textural patterns detectable on conventional clinical-grade T2-FLAIR images. Implications of all the available evidence Assessing brain structural integrity has implications for treatment selection, follow-up, prognosis, and recovery prediction in stroke patients but also other neurological disease populations. Measuring cerebral parenchymal structural integrity usually requires advanced imaging such as diffusion tensor imaging or functional MRI. Translation of those neuroimaging biomarkers remains uncommon in clinical practice mainly because of their time-consuming and costly acquisition. Our study provides a potential novel solution to assess brains’ structural integrity applicable to standard, routinely acquired T2-FLAIR imaging. Future research could, for instance, benchmark this radiomics approach against diffusion or functional MRI metrics in the prediction of cognitive or functional outcomes after stroke.