GF
Giovanni Frisoni
Author with expertise in Mechanisms of Alzheimer's Disease
University Hospital of Geneva, University of Geneva, Centro San Giovanni di Dio Fatebenefratelli
+ 7 more
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
7
(14% Open Access)
Cited by:
2
h-index:
105
/
i10-index:
511
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

TMEM106B and CPOX are genetic determinants of cerebrospinal fluid Alzheimer’s disease biomarker levels

Shengjun Hong et al.Oct 24, 2023
+35
I
V
S
Abstract Background Neurofilament light (NF-L), chitinase-3-like protein 1 (YKL-40), and neurogranin (Ng) are utilized as biomarkers for Alzheimer’s disease (AD), to monitor axonal damage, astroglial activation, and synaptic degeneration, respectively. Here we performed genome-wide association study (GWAS) analyses using all three biomarkers as outcome. Methods DNA and cerebrospinal fluid (CSF) samples originated from the European Medical Information Framework AD Multimodal Biomarker Discovery (EMIF-AD MBD) study. Overlapping genotype/phenotype data were available for n=671 (NF-L), 677 (YKL-40), and 672 (Ng) individuals. GWAS analyses applied linear regression models adjusting for relevant covariates. Findings We identify novel genome-wide significant associations with markers in TMEM106B and CSF levels of NF-L. Additional novel signals were observed with DNA variants in CPOX and CSF levels of YKL-40. Lastly, we confirmed previous work suggesting that YKL-40 levels are regulated by cis protein quantitative trait loci (pQTL) in CHI3L1 . Interpretation Our study provides important new insights into the genetic architecture underlying inter-individual variation in all three tested AD-related CSF biomarkers. In particular, our data shed light on the sequence of events regarding the initiation and progression of neuropathological processes relevant in AD.
4
Citation2
0
Save
0

Normative modelling using deep autoencoders: a multi-cohort study on mild cognitive impairment and Alzheimer's disease

Walter Pinaya et al.May 7, 2020
+9
R
C
W
Normative modelling is an emerging method for quantifying how individuals deviate from the healthy populational pattern. Several machine learning models have been implemented to develop normative models to investigate brain disorders, including regression, support vector machines and Gaussian process models. With the advance of deep learning technology, the use of deep neural networks has also been proposed. In this study, we assessed normative models based on deep autoencoders using structural neuroimaging data from patients with Alzheimer's disease (n=206) and mild cognitive impairment (n=354). We first trained the autoencoder on an independent dataset (UK Biobank dataset) with 11,034 healthy controls. Then, we estimated how each patient deviated from this norm and established which brain regions were associated to this deviation. Finally, we compared the performance of our normative model against traditional classifiers. As expected, we found that patients exhibited deviations according to the severity of their clinical condition. The model identified medial temporal regions, including the hippocampus, and the ventricular system as critical regions for the calculation of the deviation score. Overall, the normative model had comparable cross-cohort generalizability to traditional classifiers. In order to promote open science, we are making all scripts and the trained models available to the wider research community.
0

Genome-wide association study of Alzheimer's disease CSF biomarkers in the EMIF-AD Multimodal Biomarker Discovery dataset

Shengjun Hong et al.May 7, 2020
+42
V
D
S
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and the most common form of dementia in the elderly. Susceptibility to AD is considerably determined by genetic factors which hitherto were primarily identified using case-control designs. Elucidating the genetic architecture of additional AD-related phenotypic traits, ideally those linked to the underlying disease process, holds great promise in gaining deeper insights into the genetic basis of AD and in developing better clinical prediction models. To this end, we generated genome-wide single-nucleotide polymorphism (SNP) genotyping data in 931 participants of the European Medical Information Framework Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) sample to search for novel genetic determinants of AD biomarker variability. Specifically, we performed genome-wide association study (GWAS) analyses on 16 traits, including 14 measures of amyloid-beta (Aβ) and tau-protein species in the cerebrospinal fluid (CSF). In addition to confirming the well-established effects of apolipoprotein E (APOE) on diagnostic outcome and phenotypes related to Aβ42, we detected novel potential signals in the zinc finger homeobox 3 (ZFHX3) for CSF-Aβ38 and CSF-Aβ40 levels, and confirmed the previously described sex-specific association between SNPs in geminin coiled-coil domain containing (GMNC) and CSF-tau. Utilizing the results from independent case-control AD GWAS to construct polygenic risk scores (PRS) revealed that AD risk variants only explain a small fraction of CSF biomarker variability. In conclusion, our study represents a detailed first account of GWAS analyses on CSF-Aβ and -tau related traits in the EMIF-AD MBD dataset. In subsequent work, we will utilize the genomics data generated here in GWAS of other AD-relevant clinical outcomes ascertained in this unique dataset.
0

Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference

Alexandra Young et al.May 7, 2020
+27
N
R
A
The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we present a new machine learning technique - Subtype and Stage Inference (SuStaIn) - able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal new subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes, and characterises within-group heterogeneity for the first time. In Alzheimer's disease, SuStaIn uncovers three subtypes, uniquely revealing their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p=7.18×10-4) or temporal stage (p=3.96×10-5). SuStaIn thus offers new promise for enabling disease subtype discovery and precision medicine.
0

Spatiotemporal analysis for detection of pre-symptomatic shape changes in neurodegenerative diseases: applied to GENFI study

Claire Cury et al.May 7, 2020
+19
D
S
C
Brain atrophy as measured from structural MR images, is one of the primary imaging biomarkers used to track neurodegenerative disease progression. In diseases such as frontotemporal dementia or Alzheimer's disease, atrophy can be observed in key brain structures years before any clinical symptoms are present. Atrophy is most commonly captured as volume change of key structures and the shape changes of these structures are typically not analysed despite being potentially more sensitive than summary volume statistics over the entire structure. In this paper we propose a spatiotemporal analysis pipeline based Large Diffeomorphic Deformation Metric Mapping (LDDMM) to detect shape changes from volumetric MRI scans. We applied our framework to a cohort of individuals with genetic variants of frontotemporal dementia and healthy controls from the Genetic FTD Initiative (GENFI) study. Our method, take full advantage of the LDDMM framework, and relies on the creation of a population specific average spatiotemporal trajectory of a relevant brain structure of interest, the thalamus in our case. The residuals from each patient data to the average spatiotemporal trajectory are then clustered and studied to assess when presymptomatic mutation carriers differ from healthy control subjects. We found statistical differences in shape in the anterior region of the thalamus at least five years before the mutation carrier subjects develop any clinical symptoms. This region of the thalamus has been shown to be predominantly connected to the frontal lobe, consistent with the pattern of cortical atrophy seen in the disease.
0

Data-driven algorithm for the diagnosis of behavioral variant frontotemporal dementia

Ana Manera et al.May 7, 2020
+26
J
M
A
INTRODUCTION: Brain structural imaging is paramount for the diagnosis of behavioral variant of frontotemporal dementia (bvFTD), but it has low sensitivity leading to erroneous or late diagnosis. METHODS: A total of 515 subjects from two different bvFTD databases (training and validation cohorts) were included to perform voxel-wise deformation-based morphometry analysis to identify regions with significant differences between bvFTD and controls. A random forest classifier was used to individually predict bvFTD from morphometric differences in isolation and together with bedside cognitive scores. RESULTS: Average ten-fold cross-validation accuracy was 89% (82% sensitivity, 93% specificity) using only MRI and 94% (89% sensitivity, 98% specificity) with the addition of semantic fluency. In a separate validation cohort of genetically confirmed bvFTD, accuracy was 88% (81% sensitivity, 92% specificity) with MRI and 91% (79% sensitivity, 96% specificity) with added cognitive scores. DISCUSSION: The random forest classifier developed can accurately predict bvFTD at the individual subject level.
0

Analysis of brain atrophy and local gene expression implicates astrocytes in Frontotemporal dementia

André Altmann et al.May 7, 2020
+32
M
D
A
Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder characterized by neuronal loss in the frontal and temporal lobes. Despite progress in understanding which genes are associated with the aetiology of FTD (C9orf72, GRN and MAPT), the biological basis of how mutations in these genes lead to cell loss in specific cortical regions remains unclear. In this work we combined gene expression data for 16,912 genes from the Allen Institute for Brain Science atlas with brain maps of gray matter atrophy in symptomatic C9orf72, GRN and MAPT carriers obtained from the Genetic FTD Initiative study. A set of 405 and 250 genes showed significant positive and negative correlation, respectively, with atrophy patterns in all three maps. The gene set with increased expression in spared cortical regions, i.e., signaling regional resilience to atrophy, is enriched for neuronal genes, while the gene set with increased expression in atrophied regions, i.e., signaling regional vulnerability, is enriched for astrocyte genes. Notably, these results extend earlier findings from proteomic analyses in the same cortical regions of interest comparing healthy controls and patients with FTD. Thus, our analysis indicates that cortical regions showing the most severe atrophy in genetic FTD are those with the highest astrocyte density in healthy subjects. Therefore, astrocytes may play a more active role in the onset of neurodegeneration in FTD than previously assumed, e.g., through emergence of neurotoxic (A1) astrocytes.