ABSTRACT BACKGROUND Paediatric neuroblastoma and brain tumours account for a third of all childhood cancer-related mortality. High-risk neuroblastoma is highly aggressive and survival is poor despite intensive multi-modal therapies with significant toxicity. Novel therapies are desperately needed. The Zika virus (ZIKV) is neurotropic and there is growing interest in employing ZIKV as a potential therapy against paediatric nervous system tumours, including neuroblastoma. METHODS Here, we perform an extensive meta-analysis of ZIKV infection studies to identify molecular mechanisms that may govern the oncolytic response in neuroblastoma cells. We summarise the neuroblastoma cell lines and ZIKV strains utilised and re-evaluate the infection data to deduce the susceptibility of neuroblastoma to the ZIKV oncolytic response. Integrating transcriptomics, interaction proteomics, dependency factor and compound datasets we show the involvement of multiple host systems during ZIKV infection. RESULTS We identify that most paediatric neuroblastoma cell lines are highly susceptible to ZIKV infection and that the PRVABC59 ZIKV strain is the most promising candidate for neuroblastoma oncolytic virotherapy. ZIKV induces TNF signalling, lipid metabolism, the Unfolded Protein Response (UPR), and downregulates cell cycle and DNA replication processes. ZIKV is dependent on SREBP-regulated lipid metabolism and three protein complexes; V-ATPase, ER Membrane Protein Complex (EMC) and mammalian translocon. We propose ZIKV nonstructural protein 4B (NS4B) as a likely mediator of ZIKVs interaction with IRE1-mediated UPR, lipid metabolism and mammalian translocon. CONCLUSIONS Our work provides a significant understanding of ZIKV infection in neuroblastoma cells, which will facilitate the progression of ZIKV-based oncolytic virotherapy through pre-clinical research and clinical trials. KEYPOINTS The Zika virus may provide the basis for an oncolytic virotherapy against Neuroblastoma Most paediatric neuroblastoma cell lines are susceptible to Zika viral infection We identified molecular mechanisms that may induce the oncolytic response in Neuroblastoma Contribution to the field The ability to both induce direct oncolysis and provoke an anti-tumoral immune response makes oncolytic virotherapy an attractive candidate to combat aggressive and heterogenous cancers, such as high-risk neuroblastoma. To progress oncolytic virotherapy to clinical trial it is essential to understand the host mechanisms the virus manipulates to kill cancer cells, alongside any pathology as a consequence of infection of normal cells. Here, we show that ZIKV efficiently infects and induces oncolysis of paediatric neuroblastoma cells and propose a potential TNF pathway-driven immune response. ZIKV’s specificity for infection of nervous system cancer cells, while rarely causing nervous system-related pathology in young children, addresses many of its safety concerns. The inclusion of more effective and less toxic novel therapies, such as a potential ZIKV-based therapeutic, in multimodal treatment regimens will pave the way for improving patient long-term health and overall survival.