DB
Devon Bonner
Author with expertise in Standards and Guidelines for Genetic Variant Interpretation
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
4
(25% Open Access)
Cited by:
1
h-index:
24
/
i10-index:
42
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Impact of genome build on RNA-seq interpretation and diagnostics

Rachel Ungar et al.Jun 3, 2024
+7
T
P
R
Transcriptomics is a powerful tool for unraveling the molecular effects of genetic variants and disease diagnosis. Prior studies have demonstrated that choice of genome build impacts variant interpretation and diagnostic yield for genomic analyses. To identify the extent genome build also impacts transcriptomics analyses, we studied the effect of the hg19, hg38, and CHM13 genome builds on expression quantification and outlier detection in 386 rare disease and familial control samples from both the Undiagnosed Diseases Network and Genomics Research to Elucidate the Genetics of Rare Disease Consortium. Across six routinely collected biospecimens, 61% of quantified genes were not influenced by genome build. However, we identified 1,492 genes with build-dependent quantification, 3,377 genes with build-exclusive expression, and 9,077 genes with annotation-specific expression across six routinely collected biospecimens, including 566 clinically relevant and 512 known OMIM genes. Further, we demonstrate that between builds for a given gene, a larger difference in quantification is well correlated with a larger change in expression outlier calling. Combined, we provide a database of genes impacted by build choice and recommend that transcriptomics-guided analyses and diagnoses are cross referenced with these data for robustness.
0
Citation1
0
Save
0

Identification of Pathogenic Structural Variants in Rare Disease Patients through Genome Sequencing

James Holt et al.May 15, 2019
+16
D
C
J
Purpose: Clinical whole genome sequencing is becoming more common for determining the molecular diagnosis of rare disease. However, standard clinical practice often focuses on small variants such as single nucleotide variants and small insertions/deletions. This leaves a wide range of larger "structural variants" that are not commonly analyzed in patients. Methods: We developed a pipeline for processing structural variants for patients who received whole genome sequencing through the Undiagnosed Diseases Network (UDN). This pipeline called structural variants, stored them in an internal database, and filtered the variants based on internal frequencies and external annotations. The remaining variants were manually inspected and then interesting findings were reported as research variants to clinical sites in the UDN. Results: Of 477 analyzed UDN cases, 286 cases (≈ 60%) received at least one structural variant as a research finding. The variants in 16 cases (≈ 4%) are considered "Certain" or "Highly likely" molecularly diagnosed and another 4 cases are currently in review. Of those 20 cases, at least 13 were identified originally through our pipeline with one finding leading to identification of a new disease. As part of this paper, we have also released the collection of variant calls identified in our cohort along with heterozygous and homozygous call counts. This data is available at https://github.com/HudsonAlpha/UDN\_SV\_export. Conclusion: Structural variants are key genetic features that should be analyzed during routine clinical genomic analysis. For our UDN patients, structural variants helped solve ≈ 4% of the total number of cases (≈ 13% of all genome sequencing solves), a success rate we expect to improve with better tools and greater understanding of the human genome.
0

Identification of rare-disease genes in diverse undiagnosed cases using whole blood transcriptome sequencing and large control cohorts

Laure Frésard et al.Sep 4, 2018
+30
K
N
L
RNA sequencing (RNA-seq) is a complementary approach for Mendelian disease diagnosis for patients in whom exome-sequencing is not informative. For both rare neuromuscular and mitochondrial disorders, its application has improved diagnostic rates. However, the generalizability of this approach to diverse Mendelian diseases has yet to be evaluated. We sequenced whole blood RNA from 56 cases with undiagnosed rare diseases spanning 11 diverse disease categories to evaluate the general application of RNA-seq to Mendelian disease diagnosis. We developed a robust approach to compare rare disease cases to existing large sets of RNA-seq controls (N=1,594 external and N=31 family-based controls) and demonstrated the substantial impacts of gene and variant filtering strategies on disease gene identification when combined with RNA-seq. Across our cohort, we observed that RNA-seq yields a 8.5% diagnostic rate. These diagnoses included diseases where blood would not intuitively reflect evidence of disease. We identified RARS2 as an under-expression outlier containing compound heterozygous pathogenic variants for an individual exhibiting profound global developmental delay, seizures, microcephaly, hypotonia, and progressive scoliosis. We also identified a new splicing junction in KCTD7 for an individual with global developmental delay, loss of milestones, tremors and seizures. Our study provides a broad evaluation of blood RNA-seq for the diagnosis of rare disease.
0

Machine learning-based detection of insertions and deletions in the human genome

Charles Curnin et al.May 5, 2019
+4
D
S
C
Insertions and deletions (indels) make a critical contribution to human genetic variation. While indel calling has improved significantly, it lags dramatically in performance relative to single-nucleotide variant calling, something of particular concern for clinical genomics where larger scale disruption of the open reading frame can commonly cause disease. Here, we present a machine learning-based approach to the detection of indel breakpoints called Scotch . This novel approach improves sensitivity to larger variants dramatically by leveraging sequencing metrics and signatures of poor read alignment. We also introduce a meta-analytic indel caller, called Metal, that performs a “smart intersection” of Scotch and currently available tools to be maximally sensitive to large variants. We use new benchmark datasets and Sanger sequencing to compare Scotch and Metal to current gold standard indel callers, achieving unprecedented levels of precision and recall. We demonstrate the impact of these improvements by applying this tool to a cohort of patients with undiagnosed disease, generating plausible novel candidates in 21 out of 26 undiagnosed cases. We highlight the diagnosis of one patient with a 498-bp deletion in HNRNPA1 missed by traditional indel-detection tools.