DB
Diego Bohórquez
Author with expertise in Sweeteners' Taste and Impact on Health
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
1,872
h-index:
18
/
i10-index:
19
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Neuroepithelial circuit formed by innervation of sensory enteroendocrine cells

Diego Bohórquez et al.Jan 2, 2015
Satiety and other core physiological functions are modulated by sensory signals arising from the surface of the gut. Luminal nutrients and bacteria stimulate epithelial biosensors called enteroendocrine cells. Despite being electrically excitable, enteroendocrine cells are generally thought to communicate indirectly with nerves through hormone secretion and not through direct cell-nerve contact. However, we recently uncovered in intestinal enteroendocrine cells a cytoplasmic process that we named neuropod. Here, we determined that neuropods provide a direct connection between enteroendocrine cells and neurons innervating the small intestine and colon. Using cell-specific transgenic mice to study neural circuits, we found that enteroendocrine cells have the necessary elements for neurotransmission, including expression of genes that encode pre-, post-, and transsynaptic proteins. This neuroepithelial circuit was reconstituted in vitro by coculturing single enteroendocrine cells with sensory neurons. We used a monosynaptic rabies virus to define the circuit’s functional connectivity in vivo and determined that delivery of this neurotropic virus into the colon lumen resulted in the infection of mucosal nerves through enteroendocrine cells. This neuroepithelial circuit can serve as both a sensory conduit for food and gut microbes to interact with the nervous system and a portal for viruses to enter the enteric and central nervous systems.
0

An Enteroendocrine Cell – Enteric Glia Connection Revealed by 3D Electron Microscopy

Diego Bohórquez et al.Feb 26, 2014
The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY – both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM). Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia – the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells.
0
Citation212
0
Save
0

A gut sensor for sugar preference

Kelly Buchanan et al.Mar 8, 2020
Animals innately prefer caloric sugars over non-caloric sweeteners. Such preference depends on the sugar entering the intestine. Although the brain is aware of the stimulus within seconds, how the gut discerns the caloric sugar to guide choice is unknown. Recently, we discovered an intestinal transducer, known as the neuropod cell. This cell synapses with the vagus to inform the brain about glucose in the gut in milliseconds. Here, we demonstrate that neuropod cells distinguish a caloric sugar from a non-caloric sweetener using the electrogenic sodium glucose co-transporter 1 (SGLT1) or sweet taste receptors. Activation of neuropod cells by non-caloric sucralose leads to ATP release, whereas the entry of caloric sucrose via SGLT1 stimulates glutamate release. To interrogate the contribution of the neuropod cell to sugar preference, we developed a method to record animal preferences in real time while using optogenetics to silence or excite neuropod cells. We discovered that silencing these cells, or blocking their glutamatergic signaling, renders the animals unable to recognize the caloric sugar. And, exciting neuropod cells leads the animal to consume the non-caloric sweetener as if it were caloric. By transducing the precise identity of the stimuli entering the gut, neuropod cells guide an animal's internal preference toward the caloric sugar.