Background: DNA methylation may be one of the mechanisms by which alcohol consumption is associated with the risk of disease. We conducted a large-scale, cross-sectional, genome-wide DNA methylation association study of alcohol consumption and a longitudinal analysis of repeated measurements taken several years apart. Methods: Using the Illumina Infinium HumanMethylation450 BeadChip, DNA methylation measures were determined using baseline peripheral blood samples from 5,606 adult Melbourne Collaborative Cohort Study (MCCS) participants. For a subset of 1,088 of them, these measures were repeated using blood samples collected at follow-up, a median of 11 years later. Associations between alcohol intake and blood DNA methylation were assessed using linear mixed-effects regression models adjusted for batch effects and potential confounders. Independent data from the LOLIPOP (N=4,042) and KORA (N=1,662) cohorts were used to replicate associations discovered in the MCCS. Results: Cross-sectional analyses identified 1,414 CpGs associated with alcohol intake at P<10-7, 1,243 of which had not been reported previously. Of these 1,243 novel associations, 1,078 were replicated (P<0.05) using LOLIPOP and KORA data. Using the MCCS data, we also replicated (P<0.05) 403 of 518 associations that had been reported previously. Interaction analyses suggested that associations were stronger for women, non-smokers, and participants genetically predisposed to consume less alcohol. Of the 1,414 CpGs, 530 were differentially methylated (P<0.05) in former compared with current drinkers. Longitudinal associations between the change in alcohol intake and the change in methylation were observed for 513 of the 1,414 cross-sectional associations. Conclusion: Our study indicates that, for middle-aged and older adults, alcohol intake is associated with widespread changes in DNA methylation across the genome. Longitudinal analyses showed that the methylation status of alcohol-associated CpGs may change with changes in alcohol consumption.