AB
Alexandra Binder
Author with expertise in Epigenetic Modifications and Their Functional Implications
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
14
h-index:
24
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
48

Genome-wide association studies identify 137 loci for DNA methylation biomarkers of ageing

Daniel McCartney et al.Jun 30, 2020
+111
A
R
D
Abstract Biological ageing estimators derived from DNA methylation (DNAm) data are heritable and correlate with morbidity and mortality. Leveraging DNAm and SNP data from >41,000 individuals, we identify 137 genome-wide significant loci (113 novel) from meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We report strong genetic correlations with longevity and lifestyle factors such as smoking, education, and obesity. Significant associations are observed in polygenic risk score analysis and to a lesser extent in Mendelian randomization analyses. This study illuminates the genetic architecture underlying epigenetic ageing and its shared genetic contributions with lifestyle factors and longevity.
48
Citation13
0
Save
4

Epigenome-wide association study of total nicotine equivalents in multiethnic current smokers from three prospective cohorts

Brian Huang et al.Mar 1, 2024
+18
B
A
B
The impact of tobacco exposure on health varies by race and ethnicity and is closely tied to internal nicotine dose, a marker of carcinogen uptake. DNA methylation is strongly responsive to smoking status and may mediate health effects, but study of associations with internal dose is limited. We performed a blood leukocyte epigenome-wide association study (EWAS) of urinary total nicotine equivalents (TNEs; a measure of nicotine uptake) and DNA methylation measured using the MethylationEPIC v1.0 BeadChip (EPIC) in six racial and ethnic groups across three cohort studies. In the Multiethnic Cohort Study (discovery, n = 1994), TNEs were associated with differential methylation at 408 CpG sites across >250 genomic regions (p < 9 × 10-8). The top significant sites were annotated to AHRR, F2RL3, RARA, GPR15, PRSS23, and 2q37.1, all of which had decreasing methylation with increasing TNEs. We identified 45 novel CpG sites, of which 42 were unique to the EPIC array and eight annotated to genes not previously linked with smoking-related DNA methylation. The most significant signal in a novel gene was cg03748458 in MIR383;SGCZ. Fifty-one of the 408 discovery sites were validated in the Singapore Chinese Health Study (n = 340) and the Southern Community Cohort Study (n = 394) (Bonferroni corrected p < 1.23 × 10-4). Significant heterogeneity by race and ethnicity was detected for CpG sites in MYO1G and CYTH1. Furthermore, TNEs significantly mediated the association between cigarettes per day and DNA methylation at 15 sites (average 22.5%-44.3% proportion mediated). Our multiethnic study highlights the transethnic and ethnic-specific methylation associations with internal nicotine dose, a strong predictor of smoking-related morbidities.
4
Citation1
1
Save
0

Accurate ethnicity prediction from placental DNA methylation data

Victor Yuan et al.Apr 30, 2019
+7
E
G
V
ABSTRACT Background The influence of genetics on variation in DNA methylation (DNAme) is well documented. Yet confounding from population stratification is often unaccounted for in DNAme association studies. Existing approaches to address confounding by population stratification using DNAme data may not generalize to populations or tissues outside those in which they were developed. To aid future placental DNAme studies in assessing population stratification, we developed an ethnicity classifier, PlaNET ( Pla cental DNAme Elastic N et E thnicity T ool), using five cohorts with Infinium Human Methylation 450k BeadChip array (HM450k) data from placental samples that is also compatible with the newer EPIC platform. Results Data from 509 placental samples was used to develop PlaNET and show that it accurately predicts (accuracy = 0.938, kappa = 0.823) major classes of self-reported ethnicity/race (African: n = 58, Asian: n = 53, Caucasian: n = 389), and produces ethnicity probabilities that are highly correlated with genetic ancestry inferred from genome-wide SNP arrays (>2.5 million SNP) and ancestry informative markers (n = 50 SNPs). PlaNET’s ethnicity classification relies on 1860 HM450K microarray sites, and over half of these were linked to nearby genetic polymorphisms (n = 955). Our placental-optimized method outperforms existing approaches in assessing population stratification in placental samples from individuals of Asian, African, and Caucasian ethnicities. Conclusion PlaNET provides an improved approach to address population stratification in placental DNAme association studies. The method can be applied to predict ethnicity as a discrete or continuous variable and will be especially useful when self-reported ethnicity information is missing and genotyping markers are unavailable. PlaNET is available as an R package at ( https://github.com/wvictor14/planet ).