MM
Masashi Minamino
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
888
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle

Matthew Deardorff et al.Aug 10, 2012
Cornelia de Lange syndrome (CdLS) is a dominantly inherited congenital malformation disorder, caused by mutations in the cohesin-loading protein NIPBL for nearly 60% of individuals with classical CdLS, and by mutations in the core cohesin components SMC1A (~5%) and SMC3 (<1%) for a smaller fraction of probands. In humans, the multisubunit complex cohesin is made up of SMC1, SMC3, RAD21 and a STAG protein. These form a ring structure that is proposed to encircle sister chromatids to mediate sister chromatid cohesion and also has key roles in gene regulation. SMC3 is acetylated during S-phase to establish cohesiveness of chromatin-loaded cohesin, and in yeast, the class I histone deacetylase Hos1 deacetylates SMC3 during anaphase. Here we identify HDAC8 as the vertebrate SMC3 deacetylase, as well as loss-of-function HDAC8 mutations in six CdLS probands. Loss of HDAC8 activity results in increased SMC3 acetylation and inefficient dissolution of the ‘used’ cohesin complex released from chromatin in both prophase and anaphase. SMC3 with retained acetylation is loaded onto chromatin, and chromatin immunoprecipitation sequencing analysis demonstrates decreased occupancy of cohesin localization sites that results in a consistent pattern of altered transcription seen in CdLS cell lines with either NIPBL or HDAC8 mutations.
0
Citation530
0
Save
104

Phase separation induced by cohesin SMC protein complexes

Je-Kyung Ryu et al.Jun 14, 2020
Abstract Cohesin is a key protein complex that organizes the spatial structure of chromosomes during interphase. Here, we show that yeast cohesin shows pronounced clustering on DNA in an ATP-independent manner, exhibiting all the hallmarks of phase separation. In vitro visualization of cohesin on DNA shows DNA-cohesin clusters that exhibit liquid-like behavior. This includes mutual fusion and reversible dissociation upon depleting the cohesin concentration, increasing the ionic strength, or adding 1,6-hexanediol, conditions that disrupt weak interactions. We discuss how bridging-induced phase separation can explain the DNA-cohesin clustering through DNA-cohesin-DNA bridges. We confirm that, in vivo, a fraction of cohesin associates with chromatin in yeast cells in a manner consistent with phase separation. Our findings establish that SMC proteins can exhibit phase separation, which has potential to clarify previously unexplained aspects of in vivo SMC behavior and constitute an additional principle by which SMC complexes impact genome organization. One sentence summary Yeast cohesin complex is observed to phase separate with DNA into liquid droplets, which it accomplishes by ATP-independent DNA bridging.
104
Citation14
0
Save
1

Replication-induced DNA secondary structures drive fork uncoupling and breakage

Sophie Williams et al.Nov 18, 2022
Abstract Sequences that can form DNA secondary structures, such as G-quadruplexes (G4s) and intercalated-Motifs (iMs), are abundant in the human genome and play a range of physiological roles. However, they can also pose a challenge to the replication machinery and in turn threaten genome stability. Multiple lines of evidence suggest G4s interfere with replication, but the underlying mechanism remains unclear. Moreover, there is a lack of evidence of how iMs affect the replisome. Here, we reconstitute replication of physiologically derived structure-forming sequences to find that a single G4 or iM is sufficient to arrest DNA replication. Direct single molecule structure detection within solid-state nanopores reveals structures form as a consequence of replication. A combination of genetic and biophysical characterisation establishes that structure forming capacity is a key determinant of replisome arrest. Mechanistically, replication fork arrest is caused by impaired synthesis, resulting in helicase-polymerase uncoupling. Significantly, iMs also induce breakage of nascent DNA. Finally, stalled forks are only rescued by a specialised helicase, Pif1, but not Sgs1 or Chl1. Altogether, this study provides a potential mechanism for quadruplex structure formation and resolution during replication and highlights G4s and iMs as endogenous sources of replication stress, which may explain their genomic instability and mutation frequencies in cancer.
1
Citation2
0
Save