AM
Ananth Madhuranthakam
Author with expertise in Magnetic Resonance Imaging Applications in Medicine
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
17
(24% Open Access)
Cited by:
409
h-index:
28
/
i10-index:
56
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Comprehensive quantification of signal‐to‐noise ratio and g‐factor for image‐based and k‐space‐based parallel imaging reconstructions

Philip Robson et al.Sep 24, 2008
Abstract Parallel imaging reconstructions result in spatially varying noise amplification characterized by the g ‐factor, precluding conventional measurements of noise from the final image. A simple Monte Carlo based method is proposed for all linear image reconstruction algorithms, which allows measurement of signal‐to‐noise ratio and g ‐factor and is demonstrated for SENSE and GRAPPA reconstructions for accelerated acquisitions that have not previously been amenable to such assessment. Only a simple “prescan” measurement of noise amplitude and correlation in the phased‐array receiver, and a single accelerated image acquisition are required, allowing robust assessment of signal‐to‐noise ratio and g ‐factor. The “pseudo multiple replica” method has been rigorously validated in phantoms and in vivo, showing excellent agreement with true multiple replica and analytical methods. This method is universally applicable to the parallel imaging reconstruction techniques used in clinical applications and will allow pixel‐by‐pixel image noise measurements for all parallel imaging strategies, allowing quantitative comparison between arbitrary k ‐space trajectories, image reconstruction, or noise conditioning techniques. Magn Reson Med 60:895–907, 2008. © 2008 Wiley‐Liss, Inc.
4

A Novel Fully Automated MRI-Based Deep Learning Method for Classification of 1P/19Q Co-Deletion Status in Brain Gliomas

Chandan Yogananda et al.Jul 17, 2020
ABSTRACT Background One of the most important recent discoveries in brain glioma biology has been the identification of the isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion status as markers for therapy and prognosis. 1p/19q co-deletion is the defining genomic marker for oligodendrogliomas and confers a better prognosis and treatment response than gliomas without it. Our group has previously developed a highly accurate deep-learning network for determining IDH mutation status using T2-weighted MRI only. The purpose of this study was to develop a similar 1p/19q deep-learning classification network. Methods Multi-parametric brain MRI and corresponding genomic information were obtained for 368 subjects from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA). 1p/19 co-deletions were present in 130 subjects. 238 subjects were non co-deleted. A T2w image only network (1p/19q-net) was developed to perform 1p/19q co-deletion status classification and simultaneous single-label tumor segmentation using 3D-Dense-UNets. Threefold cross-validation was performed to generalize the network performance. ROC analysis was also performed. Dice-scores were computed to determine tumor segmentation accuracy. Results 1p/19q-net demonstrated a mean cross validation accuracy of 93.46% across the 3 folds (93.4%, 94.35%, and 92.62%, standard dev=0.8) in predicting 1p/19q co-deletion status with a sensitivity and specificity of 0.90 ±0.003 and 0.95 ±0.01, respectively and a mean AUC of 0.95 ±0.01. The whole tumor segmentation mean Dice-score was 0.80 ± 0.007. Conclusion We demonstrate high 1p/19q co-deletion classification accuracy using only T2-weighted MR images. This represents an important milestone toward using MRI to predict glioma histology, prognosis, and response to treatment. Keypoints 1. 1p/19 co-deletion status is an important genetic marker for gliomas. 2. We developed a non-invasive, MRI based, highly accurate deep-learning method for the determination of 1p/19q co-deletion status that only utilizes T2 weighted MR images IMPORTANCE OF THE STUDY One of the most important recent discoveries in brain glioma biology has been the identification of the isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion status as markers for therapy and prognosis. 1p/19q co-deletion is the defining genomic marker for oligodendrogliomas and confers a better prognosis and treatment response than gliomas without it. Currently, the only reliable way to determine 1p/19q mutation status requires analysis of glioma tissue obtained either via an invasive brain biopsy or following open surgical resection. The ability to non-invasively determine 1p/19q co-deletion status has significant implications in determining therapy and predicting prognosis. We developed a highly accurate, deep learning network that utilizes only T2-weighted MR images and outperforms previously published imagebased methods. The high classification accuracy of our T2w image only network (1p/19q-net) in predicting 1p/19q co-deletion status marks an important step towards image-based stratification of brain gliomas. Imminent clinical translation is feasible because T2-weighted MR imaging is widely available and routinely performed in the assessment of gliomas.
4
Citation17
0
Save
3

Brain Tumor IDH, 1p/19q, and MGMT Molecular Classification Using MRI-based Deep Learning: Effect of Motion and Motion Correction

Sahil Nalawade et al.Jun 2, 2020
Abstract Deep learning has shown promise for predicting glioma molecular profiles using MR images. Before clinical implementation, ensuring robustness to real-world problems, such as patient motion, is crucial. We sought to evaluate the effects of motion artifact on glioma marker classifier performance and develop a deep learning motion correction network to restore classification accuracies. T2w images and molecular information were retrieved from the TCIA and TCGA databases. Three-fold cross-validation was used to train and test the motion correction network on artifact-corrupted images. We then compared the performance of three glioma marker classifiers (IDH mutation, 1p/19q codeletion, and MGMT methylation) using motion-corrupted and motion-corrected images. Glioma marker classifier performance decreased markedly with increasing motion corruption. Applying motion correction effectively restored classification accuracy for even the most motion-corrupted images. For IDH classification, an accuracy of 99% was achieved, representing a new benchmark in non-invasive image-based IDH classification and exceeding the original performance of the network. Robust motion correction can enable high accuracy in deep learning MRI-based molecular marker classification rivaling tissue-based characterization. STATEMENT OF SIGNIFICANCE Deep learning networks have shown promise for predicting molecular profiles of gliomas using MR images. We demonstrate that patient motion artifact, which is frequently encountered in the clinic, can significantly impair the performance of these algorithms. The application of robust motion correction algorithms can restore the performance of these networks, rivaling tissue-based characterization.
3
Citation2
0
Save
0

Classification of Brain Tumor IDH Status using MRI and Deep Learning

Sahil Nalawade et al.Sep 4, 2019
Isocitrate dehydrogenase (IDH) mutation status is an important marker in glioma diagnosis and therapy. We propose a novel automated pipeline for predicting IDH status noninvasively using deep learning and T2-weighted (T2w) MR images with minimal preprocessing (N4 bias correction and normalization to zero mean and unit variance). T2w MRI and genomic data were obtained from The Cancer Imaging Archive dataset (TCIA) for 260 subjects (120 High grade and 140 Low grade gliomas). A fully automated 2D densely connected model was trained to classify IDH mutation status on 208 subjects and tested on another held-out set of 52 subjects, using 5-fold cross validation. Data leakage was avoided by ensuring subject separation during the slice-wise randomization. Mean classification accuracy of 90.5% was achieved for each axial slice in predicting the three classes of no tumor, IDH mutated and IDH wild-type. Test accuracy of 83.8% was achieved in predicting IDH mutation status for individual subjects on the test dataset of 52 subjects. We demonstrate a deep learning method to predict IDH mutation status using T2w MRI alone. Radiologic imaging studies using deep learning methods must address data leakage (subject duplication) in the randomization process to avoid upward bias in the reported classification accuracy.
3

MRI-BASED DEEP LEARNING METHOD FOR DETERMINING METHYLATION STATUS OF THE O6-METHYLGUANINE–DNA METHYLTRANSFERASE PROMOTER OUTPERFORMS TISSUE BASED METHODS IN BRAIN GLIOMAS

Chandan Yogananda et al.May 31, 2020
ABSTRACT PURPOSE Methylation of the O 6 -Methylguanine-DNA Methyltransferase (MGMT) promoter results in epigenetic silencing of the MGMT enzyme and confers an improved prognosis and treatment response in gliomas. The purpose of this study was to develop a deep-learning network for determining the methylation status of the MGMT Promoter in gliomas using T2-w magnetic resonance images only. METHODS Brain MRI and corresponding genomic information were obtained for 247 subjects from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA). 163 subjects had a methylated MGMT promoter. A T2-w image only network (MGMT-net) was developed to determine MGMT promoter methylation status and simultaneous single label tumor segmentation. The network was trained using 3D-Dense-UNets. Three-fold cross-validation was performed to generalize the networks’ performance. Dice-scores were computed to determine tumor segmentation accuracy. RESULTS MGMT-net demonstrated a mean cross validation accuracy of 94.73% across the 3 folds (95.12%, 93.98%, and 95.12%, standard dev=0.66) in predicting MGMT methylation status with a sensitivity and specificity of 96.31% ±0.04 and 91.66% ±2.06, respectively and a mean AUC of 0.93 ±0.01. The whole tumor segmentation mean Dice-score was 0.82 ± 0.008. CONCLUSION We demonstrate high classification accuracy in predicting the methylation status of the MGMT promoter using only T2-w MR images that surpasses the sensitivity, specificity, and accuracy of invasive histological methods such as pyrosequencing, methylation-specific PCR, and immunofluorescence methods. This represents an important milestone toward using MRI to predict glioma histology, prognosis, and response to treatment.
Load More