VS
Venkatesan Sundaresan
Author with expertise in Molecular Mechanisms of Plant Development and Regulation
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
23
(78% Open Access)
Cited by:
7,432
h-index:
65
/
i10-index:
109
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements.

Venkatesan Sundaresan et al.Jul 15, 1995
The crucifer Arabidopsis thaliana has been used widely as a model organism for the study of plant development. We describe here the development of an efficient insertional mutagenesis system in Arabidopsis that permits identification of genes by their patterns of expression during development. Transposable elements of the Ac/Ds system carrying the GUS reporter gene have been designed to act as enhancer traps or gene traps. A novel selection scheme maximizes recovery of unlinked transposition events. In this study 491 plants carrying independent transposon insertions were generated and screened for expression patterns. One-half of the enhancer trap insertions and one-quarter of the gene trap insertions displayed GUS expression in seedlings or flowers, including expression patterns specific to organs, tissues, cell types, or developmental stages. The patterns identify genes that act during organogenesis, pattern formation, or cell differentiation. Transposon insertion lines with specific GUS expression patterns provide valuable markers for studies of Arabidopsis development and identify new cell types or subtypes in plants. The diversity of gene expression patterns generated suggests that the identification and cloning of Arabidopsis genes expressed in any developmental process is feasible using this system.
0
Citation726
0
Save
0

Genetic and molecular identification of genes required for female gametophyte development and function inArabidopsis

Gabriela Pagnussat et al.Jan 6, 2005
The plant life cycle involves an alternation of generations between sporophyte and gametophyte. Currently, the genes and pathways involved in gametophytic development and function in flowering plants remain largely unknown. A large-scale mutant screen of Ds transposon insertion lines was employed to identify 130 mutants of Arabidopsis thaliana with defects in female gametophyte development and function. A wide variety of mutant phenotypes were observed, ranging from defects in different stages of early embryo sac development to mutants with apparently normal embryo sacs, but exhibiting defects in processes such as pollen tube guidance, fertilization or early embryo development. Unexpectedly, nearly half of the mutants isolated in this study were found to be primarily defective in post-fertilization processes dependent on the maternal allele, suggesting that genes expressed from the female gametophyte or the maternal genome play a major role in the early development of plant embryos. Sequence identification of the genes disrupted in the mutants revealed genes involved in protein degradation, cell death, signal transduction and transcriptional regulation required for embryo sac development, fertilization and early embryogenesis. These results provide a first comprehensive overview of the genes and gene products involved in female gametophyte development and function within a flowering plant.
0
Citation554
0
Save
0

VANGUARD1 Encodes a Pectin Methylesterase That Enhances Pollen Tube Growth in the Arabidopsis Style and Transmitting Tract

Lixi Jiang et al.Jan 19, 2005
In flowering plants, penetration of the pollen tube through stigma, style, and transmitting tract is essential for delivery of sperm nuclei to the egg cells embedded deeply within female tissues. Despite its importance in plant reproduction, little is known about the underlying molecular mechanisms that regulate the navigation of the pollen tube through the stigma, style, and transmitting tract. Here, we report the identification and characterization of an Arabidopsis thaliana gene, VANGUARD1 (VGD1) that encodes a pectin methylesterase (PME)-homologous protein of 595 amino acids and is required for enhancing the growth of pollen tubes in the style and transmitting tract tissues. VGD1 was expressed specifically in pollen grain and the pollen tube. The VGD1 protein was distributed throughout the pollen grain and pollen tube, including the plasma membrane and cell wall. Functional interruption of VGD1 reduced PME activity in the pollen to 82% of the wild type and greatly retarded the growth of the pollen tube in the style and transmitting tract, resulting in a significant reduction of male fertility. In addition, the vgd1 pollen tubes were unstable and burst more frequently when germinated and grown on in vitro culture medium, compared with wild-type pollen tubes. Our study suggests that the VGD1 product is required for growth of the pollen tube, possibly via modifying the cell wall and enhancing the interaction of the pollen tube with the female style and transmitting tract tissues.
0

Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice

Joseph Edwards et al.Feb 23, 2018
Bacterial communities associated with roots impact the health and nutrition of the host plant. The dynamics of these microbial assemblies over the plant life cycle are, however, not well understood. Here, we use dense temporal sampling of 1,510 samples from root spatial compartments to characterize the bacterial and archaeal components of the root-associated microbiota of field grown rice (Oryza sativa) over the course of 3 consecutive growing seasons, as well as 2 sites in diverse geographic regions. The root microbiota was found to be highly dynamic during the vegetative phase of plant growth and then stabilized compositionally for the remainder of the life cycle. Bacterial and archaeal taxa conserved between field sites were defined as predictive features of rice plant age by modeling using a random forest approach. The age-prediction models revealed that drought-stressed plants have developmentally immature microbiota compared to unstressed plants. Further, by using genotypes with varying developmental rates, we show that shifts in the microbiome are correlated with rates of developmental transitions rather than age alone, such that different microbiota compositions reflect juvenile and adult life stages. These results suggest a model for successional dynamics of the root-associated microbiota over the plant life cycle.
0
Citation383
0
Save
0

Drought Stress Results in a Compartment-Specific Restructuring of the Rice Root-Associated Microbiomes

Christian Santos‐Medellín et al.Jul 19, 2017
ABSTRACT Plant roots support complex microbial communities that can influence plant growth, nutrition, and health. While extensive characterizations of the composition and spatial compartmentalization of these communities have been performed in different plant species, there is relatively little known about the impact of abiotic stresses on the root microbiota. Here, we have used rice as a model to explore the responses of root microbiomes to drought stress. Using four distinct genotypes, grown in soils from three different fields, we tracked the drought-induced changes in microbial composition in the rhizosphere (the soil immediately surrounding the root), the endosphere (the root interior), and unplanted soils. Drought significantly altered the overall bacterial and fungal compositions of all three communities, with the endosphere and rhizosphere compartments showing the greatest divergence from well-watered controls. The overall response of the bacterial microbiota to drought stress was taxonomically consistent across soils and cultivars and was primarily driven by an enrichment of multiple Actinobacteria and Chloroflexi , as well as a depletion of several Acidobacteria and Deltaproteobacteria . While there was some overlap in the changes observed in the rhizosphere and endosphere communities, several drought-responsive taxa were compartment specific, a pattern likely arising from preexisting compositional differences, as well as plant-mediated processes affecting individual compartments. These results reveal that drought stress, in addition to its well-characterized effects on plant physiology, also results in restructuring of root microbial communities and suggest the possibility that constituents of the altered plant microbiota might contribute to plant survival under extreme environmental conditions. IMPORTANCE With the likelihood that changes in global climate will adversely affect crop yields, the potential role of microbial communities in enhancing plant performance makes it important to elucidate the responses of plant microbiomes to environmental variation. By detailed characterization of the effect of drought stress on the root-associated microbiota of the crop plant rice, we show that the rhizosphere and endosphere communities undergo major compositional changes that involve shifts in the relative abundances of a taxonomically diverse set of bacteria in response to drought. These drought-responsive microbes, in particular those enriched under water deficit conditions, could potentially benefit the plant as they could contribute to tolerance to drought and other abiotic stresses, as well as provide protection from opportunistic infection by pathogenic microbes. The identification and future isolation of microbes that promote plant tolerance to drought could potentially be used to mitigate crop losses arising from adverse shifts in climate.
0
Citation382
0
Save
0

Computational prediction of miRNAs in Arabidopsis thaliana

Alex Adai et al.Jan 1, 2005
MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression in animals and plants. Comparative genomic computational methods have been developed to predict new miRNAs in worms, flies, and humans. Here, we present a novel single genome approach for the detection of miRNAs in Arabidopsis thaliana . This was initiated by producing a candidate miRNA-target data set using an algorithm called findMiRNA, which predicts potential miRNAs within candidate precursor sequences that have corresponding target sites within transcripts. From this data set, we used a characteristic divergence pattern of miRNA precursor families to select 13 potential new miRNAs for experimental verification, and found that corresponding small RNAs could be detected for at least eight of the candidate miRNAs. Expression of some of these miRNAs appears to be under developmental control. Our results are consistent with the idea that targets of miRNAs encompass a wide range of transcripts, including those for F-box factors, ubiquitin conjugases, Leucine-rich repeat proteins, and metabolic enzymes, and that regulation by miRNAs might be widespread in the genome. The entire set of annotated transcripts in the Arabidopsis genome has been run through findMiRNA to yield a data set that will enable identification of potential miRNAs directed against any target gene.
0
Citation365
0
Save
0

Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses

Walter Dewitte et al.Aug 29, 2007
Current understanding of the integration of cell division and expansion in the development of plant lateral organs such as leaves is limited. Cell number is established during a mitotic phase, and subsequent growth into a mature organ relies primarily on cell expansion accompanied by endocycles. Here we show that the three Arabidopsis cyclin D3 ( CYCD3 ) genes are expressed in overlapping but distinct patterns in developing lateral organs and the shoot meristem. Triple loss-of-function mutants show that CYCD3 function is essential neither for the mitotic cell cycle nor for morphogenesis. Rather, analysis of mutant and reciprocal overexpression phenotypes shows that CYCD3 function contributes to the control of cell number in developing leaves by regulating the duration of the mitotic phase and timing of the transition to endocycles. Petals, which normally do not endoreduplicate, respond to loss of CYCD3 function with larger cells that initiate endocycles. The phytohormone cytokinin regulates cell division in the shoot meristem and developing leaves and induces CYCD3 expression. Loss of CYCD3 impairs shoot meristem function and leads to reduced cytokinin responses, including the inability to initiate shoots on callus, without affecting endogenous cytokinin levels. We conclude that CYCD3 activity is important for determining cell number in developing lateral organs and the relative contribution of the alternative processes of cell production and cell expansion to overall organ growth, as well as mediating cytokinin effects in apical growth and development.
0
Citation360
0
Save
0

Nonredundant Regulation of Rice Arbuscular Mycorrhizal Symbiosis by Two Members of the PHOSPHATE TRANSPORTER1 Gene Family

Shu‐Yi Yang et al.Oct 1, 2012
Pi acquisition of crops via arbuscular mycorrhizal (AM) symbiosis is becoming increasingly important due to limited high-grade rock Pi reserves and a demand for environmentally sustainable agriculture. Here, we show that 70% of the overall Pi acquired by rice (Oryza sativa) is delivered via the symbiotic route. To better understand this pathway, we combined genetic, molecular, and physiological approaches to determine the specific functions of two symbiosis-specific members of the PHOSPHATE TRANSPORTER1 (PHT1) gene family from rice, ORYsa;PHT1;11 (PT11) and ORYsa;PHT1;13 (PT13). The PT11 lineage of proteins from mono- and dicotyledons is most closely related to homologs from the ancient moss, indicating an early evolutionary origin. By contrast, PT13 arose in the Poaceae, suggesting that grasses acquired a particular strategy for the acquisition of symbiotic Pi. Surprisingly, mutations in either PT11 or PT13 affected the development of the symbiosis, demonstrating that both genes are important for AM symbiosis. For symbiotic Pi uptake, however, only PT11 is necessary and sufficient. Consequently, our results demonstrate that mycorrhizal rice depends on the AM symbiosis to satisfy its Pi demands, which is mediated by a single functional Pi transporter, PT11.
0
Citation324
0
Save
Load More