MH
Mario Hensen
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
17
h-index:
5
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
18

A quinolin-8-ol sub-millimolar inhibitor of UGGT, the ER glycoprotein folding quality control checkpoint

Kevin Guay et al.Jun 21, 2022
The Endoplasmic Reticulum (ER) glycoprotein folding Quality Control (ERQC) machinery aids folding of glycoproteins in the ER. Misfolded glycoprotein recognition and ER-retention is mediated by the ERQC checkpoint enzyme, the 170 kDa UDP-Glucose glycoprotein glucosyltransferase (UGGT). UGGT modulation is a promising strategy for broad-spectrum antivirals, rescue-of-secretion therapy in rare disease caused by responsive mutations in glycoprotein genes, and many cancers, but to date no selective UGGT inhibitors are known. Towards the generation of selective UGGT inhibitors, we determined the crystal structures of the catalytic domain of Chaetomium thermophilum UGGT ( Ct UGGT GT24 ), alone and in complex with the inhibitor UDP-2-deoxy-2-fluoro-D-glucose (U2F). Using the Ct UGGT GT24 crystals, we carried out a fragment-based lead discovery screen via X-ray crystallography and discovered that the small molecule 5-[(morpholin-4-yl)methyl]quinolin-8-ol (5M-8OH-Q) binds a Ct UGGT GT24 ‘WY’ conserved surface motif that is not present in other GT24 family glycosyltransferases. The 5M-8OH-Q molecule has a 613 µ M binding affinity for human UGGT1 in vitro as measured by saturation transfer difference NMR spectroscopy. The 5M-8OH-Q molecule inhibits both human UGGT1and UGGT2 activity at concentrations higher than 750 µ M in modified HEK293-6E cells. The compound is toxic in cellula and in planta at concentrations higher than 1 mM. A few off-target effects are also observed upon 5M-8OH-Q treatment. Based on an in silico model of the interaction between UGGT and its substrate N -glycan, the 5M-8OH-Q molecule likely works as a competitive inhibitor, binding to the site of recognition of the first GlcNAc residue of the substrate N -glycan. Significance Statement When a candidate drug target is the product of a housekeeping gene - i.e. it is important for the normal functioning of the healthy cell – availability of inhibitors for tests and assays is of paramount importance. One such housekeeping protein is UGGT, the enzyme that makes sure that only correctly folded glycoproteins can leave the endoplasmic reticulum for further trafficking through the secretory pathway. UGGT is a potential drug target against viruses, in certain instances of congenital rare disease, and against some cancers, but no UGGT inhibitors are known yet. We discovered and describe here a small molecule that binds human UGGT1 in vitro and inhibits both isoforms of human UGGT in cellula . The compound paves the way to testing of UGGT inhibition as a potential pharmacological strategy in a number of medical contexts.
18
Citation2
0
Save
0

Enhanced Declustering Enables Native Top-Down Analysis of Membrane Protein Complexes using Ion-Mobility Time-Aligned Fragmentation

Kleitos Sokratous et al.Jul 15, 2024
Native mass spectrometry (MS) is proving to be a disruptive technique for studying the interactions of proteins, necessary for understanding the functional roles of these biomolecules. Recent research is expanding the application of native MS towards membrane proteins directly from isolated membrane preparations or from purified detergent micelles. The former results in complex spectra comprising several heterogeneous protein complexes; the latter enables therapeutic protein targets to be screened against multiplexed preparations of compound libraries. In both cases, the resulting spectra are increasingly complex to assign/interpret, and the key to these new directions of native MS research is the ability to perform native top-down analysis, which allows unambiguous peak assignment. To achieve this, detergent removal is necessary prior to MS analyzers, which allow selection of specific m/z values, representing the parent ion for downstream activation. Here, we describe a novel, enhanced declustering (ED) device installed into the first pumping region of a cyclic IMS-enabled mass spectrometry platform. The device enables declustering of ions prior to the quadrupole by imparting collisional activation through an oscillating electric field applied between two parallel plates. The positioning of the device enables liberation of membrane protein ions from detergent micelles. Quadrupole selection can now be utilized to isolate protein–ligand complexes, and downstream collision cells enable the dissociation and identification of binding partners. We demonstrate that ion mobility (IM) significantly aids in the assignment of top-down spectra, aligning fragments to their corresponding parent ions by means of IM drift time. Using this approach, we were able to confidently assign and identify a novel hit compound against PfMATE, obtained from multiplexed ligand libraries.
0
Citation1
0
Save
0

Clamping, bending, and twisting inter-domain motions in the misfold-recognising portion of UDP-glucose:glycoprotein glucosyl-transferase

Carlos Modenutti et al.Dec 27, 2019
UDP-glucose:glycoprotein glucosyltransferase (UGGT) is the only known glycoprotein folding quality control checkpoint in the eukaryotic glycoprotein secretory pathway. When the enzyme detects a misfolded glycoprotein in the Endoplasmic Reticulum (ER), it dispatches it for ER retention by re-glucosylating it on one of its N-linked glycans. Recent crystal structures of a fungal UGGT have suggested the enzyme is conformationally mobile. Here, a negative stain electron microscopy reconstruction of UGGT in complex with a monoclonal antibody confirms that the misfold-sensing N-terminal portion of UGGT and its C-terminal catalytic domain are tightly associated. Molecular Dynamics (MD) simulations capture UGGT in so far unobserved conformational states, giving new insights into the molecule’s flexibility. Principal component analysis of the MD trajectories affords a description of UGGT’s overall inter-domain motions, highlighting three types of inter-domain movements: bending, twisting and clamping. These inter-domain motions modify the accessible surface area of the enzyme’s central saddle, likely enabling the protein to recognize and re-glucosylate substrates of different sizes and shapes, and/or re-glucosylate N-linked glycans situated at variable distances from the site of misfold. We propose to name “Parodi limit” the maximum distance between a site of misfolding on a UGGT glycoprotein substrate and an N-linked glycan that monomeric UGGT can re-glucosylate on the same glycoprotein. MD simulations estimate the Parodi limit to be around 60-70 Å. Re-glucosylation assays using UGGT deletion mutants suggest that the TRXL2 domain is necessary for activity against urea-misfolded bovine thyroglobulin. Taken together, our findings support a “one-size-fits-all adjustable spanner” substrate recognition model, with a crucial role for the TRXL2 domain in the recruitment of misfolded substrates to the enzyme’s active site.