BO
Bénédicte Ollivier
Author with expertise in Mechanisms of Plant Immune Response
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
501
h-index:
14
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations

Thierry Rouxel et al.Feb 15, 2011
+38
J
J
T
Fungi are of primary ecological, biotechnological and economic importance. Many fundamental biological processes that are shared by animals and fungi are studied in fungi due to their experimental tractability. Many fungi are pathogens or mutualists and are model systems to analyse effector genes and their mechanisms of diversification. In this study, we report the genome sequence of the phytopathogenic ascomycete Leptosphaeria maculans and characterize its repertoire of protein effectors. The L. maculans genome has an unusual bipartite structure with alternating distinct guanine and cytosine-equilibrated and adenine and thymine (AT)-rich blocks of homogenous nucleotide composition. The AT-rich blocks comprise one-third of the genome and contain effector genes and families of transposable elements, both of which are affected by repeat-induced point mutation, a fungal-specific genome defence mechanism. This genomic environment for effectors promotes rapid sequence diversification and underpins the evolutionary potential of the fungus to adapt rapidly to novel host-derived constraints. Leptosphaeria maculans is a plant pathogen that causes stem canker of oilseed rape. Rouxel et al. sequence and describe the key features of the L. maculansgenome, including partitioning into AT-rich blocks that are enriched in effector genes and transposable elements affected by repeat-induced point mutation.
0
Citation501
0
Save
1

Two independent approaches converge to the cloning of a new Leptosphaeria maculans avirulence effector gene, AvrLmS-Lep2

Ting Neik et al.Oct 3, 2020
+9
B
K
T
Summary Leptosphaeria maculans , the causal agent of blackleg disease, interacts with Brassica napus (oilseed rape, canola) in a gene-for-gene manner. The avirulence genes AvrLmS and AvrLep2 were described to be perceived by the resistance genes RlmS and LepR2 , respectively, present in the cultivar Surpass 400. Here we report cloning of AvrLmS and AvrLep2 using two independent methods. AvrLmS was cloned using combined in vitro crossing between avirulent and virulent isolates with sequencing of DNA bulks from avirulent or virulent progeny (Bulked-Segregant-Sequencing) to rapidly identify one candidate avirulence gene present in the effector repertoire of L. maculans. AvrLep2 was cloned using a bi-parental cross of avirulent and virulent L. maculans isolates and a classical map-based cloning approach. Taking these two approaches independently, we found that AvrLmS and AvrLep2 are the same gene. Complementation of virulent isolates with this gene confirmed its role in inducing resistance on Surpass 400 and Topas- LepR2 . The gene renamed AvrLmS-Lep2 encodes for a small cysteine-rich protein of unknown function with an N-terminal secretory signal peptide, which are common features of the majority of effectors from extracellular fungal plant pathogens. The AvrLmS-Lep2 / LepR2 interaction phenotype was found to vary from a typical hypersensitive response to intermediate resistance sometimes at the edge of, or evolving toward, susceptibility depending on the inoculation conditions. AvrLmS-Lep2 was nevertheless sufficient to significantly reduce the stem lesion size on plant genotypes with LepR2 , indicating the potential efficiency of this resistance to control the disease in the field.
38

A new family of structurally conserved fungal effectors displays epistatic interactions with plant resistance proteins

Noureddine Lazar et al.Dec 17, 2020
+12
Y
C
N
Abstract Recognition of a pathogen avirulence (AVR) effector protein by a cognate plant resistance (R) protein triggers a set of immune responses that render the plant resistant. Pathogens can escape this so-called Effector-Triggered Immunity (ETI) by different mechanisms including the deletion or loss-of-function mutation of the AVR gene, the incorporation of point mutations that allow recognition to be evaded while maintaining virulence function, and the acquisition of new effectors that suppress AVR recognition. The Dothideomycete Leptosphaeria maculans , causal agent of oilseed rape stem canker, is one of the few fungal pathogens where suppression of ETI by an AVR effector has been demonstrated. Indeed, AvrLm4-7 suppresses Rlm3- and Rlm9- mediated resistance triggered by AvrLm3 and AvrLm5-9, respectively. The presence of AvrLm4-7 does not impede AvrLm3 and AvrLm5-9 expression, and the three AVR proteins do not appear to physically interact. To decipher the epistatic interaction between these L. maculans AVR effectors, we determined the crystal structure of AvrLm5-9 and obtained a 3D model of AvrLm3, based on the crystal structure of Ecp11-1, a homologous AVR effector candidate from Fulvia fulva . Despite a lack of sequence similarity, AvrLm5-9 and AvrLm3 are structural analogues of AvrLm4-7 (structure previously characterized). Structure-informed sequence database searches identified a larger number of putative structural analogues among L. maculans effector candidates, including the AVR effector AvrLmS-Lep2, all produced during the early stages of oilseed rape infection, as well as among effector candidates from other phytopathogenic fungi. These structural analogues are named LARS (for Leptosphaeria AviRulence and Suppressing) effectors. Remarkably, transformants of L. maculans expressing one of these structural analogues, Ecp11-1, triggered oilseed rape immunity in several genotypes carrying Rlm3 . Furthermore, this resistance could be suppressed by AvrLm4-7. These results suggest that Ecp11-1 shares a common activity with AvrLm3 within the host plant which is detected by Rlm3, or that the Ecp11-1 structure is sufficiently close to that of AvrLm3 to be recognized by Rlm3. Author summary An efficient strategy to control fungal diseases in the field is genetic control using resistant crop cultivars. Crop resistance mainly relies on gene-for-gene relationships between plant resistance ( R ) genes and pathogen avirulence ( AVR ) genes, as defined by Flor in the 1940s. However, such gene-for-gene relationships can increase in complexity over the course of plant-pathogen co-evolution. Resistance against the plant-pathogenic fungus Leptosphaeria maculans by Brassica napus and other Brassica species relies on the recognition of effector (AVR) proteins by R proteins; however, L. maculans produces an effector that suppresses a subset of these specific resistances. Using a protein structure approach, we revealed structural analogy between several of the resistance-triggering effectors, the resistance-suppressing effector, and effectors from other plant-pathogenic species in the Dothideomycetes and Sordariomycetes classes, defining a new family of effectors called LARS. Notably, cross-species expression of one LARS effector from Fulvia fulva , a pathogen of tomato, in L. maculans resulted in recognition by several resistant cultivars of oilseed rape. These results highlight the need to integrate knowledge on effector structures to improve resistance management and to develop broad-spectrum resistances for multi-pathogen control of diseases.