LU
Linda Ulfsson
Author with expertise in Efficacy and Resistance in CML Treatment
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
12
h-index:
1
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Single-Cell Multiomics Reveals Distinct Cell States at the Top of the Human Hematopoietic Hierarchy

Mikael Sommarin et al.Apr 2, 2021
Abstract The advent of single cell (Sc) genomics has challenged the dogma of haematopoiesis as a tree-like structure of stepwise lineage commitment through distinct and increasingly restricted progenitor populations. Instead, analysis of ScRNA-seq has proposed that the earliest events in human hematopoietic stem cell (HSC) differentiation are characterized by only subtle molecular changes, with hematopoietic stem and progenitor cells (HSPCs) existing as a continuum of low-primed cell-states that gradually transition into a specific lineage (CLOUD-HSPCs). Here, we combine ScRNA-seq, ScATAC-seq and cell surface proteomics to dissect the heterogeneity of CLOUD-HSPCs at different stages of human life. Within CLOUD-HSPCs, pseudotime ordering of both mRNA and chromatin data revealed a bifurcation of megakaryocyte/erythroid and lympho/myeloid trajectories immediately downstream a subpopulation with an HSC-specific enhancer signature. Importantly, both HSCs and lineage-restricted progenitor populations could be prospectively isolated based on correlation of their molecular signatures with CD35 and CD11A expression, respectively. Moreover, we describe the changes that occur in this heterogeneity as hematopoiesis develops from neonatal to aged bone marrow, including an increase of HSCs and depletion of lympho-myeloid biased MPPs. Thus, this study dissects the heterogeneity of human CLOUD-HSPCs revealing distinct HSPC-states of relevance in homeostatic settings such as ageing.
1
Citation12
0
Save
6

Single cell multi-omics analysis of chronic myeloid leukemia links cellular heterogeneity to therapy response

Rebecca Warfvinge et al.Aug 18, 2023
Abstract The advent of tyrosine kinase inhibitors (TKIs) as treatment of chronic myeloid leukemia (CML) is a paradigm in molecularly targeted cancer therapy. Nonetheless, TKI insensitive leukemia stem cells (LSCs) persist in most patients even after years of treatment. The sustained presence, heterogeneity and evolvability of LSCs are imperative for disease progression as well as recurrence during treatment-free remission (TFR). However, dynamic changes among LSC sub-populations upon TKI therapy impede their measurement and targeting. Here, we used cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to generate high-resolution single cell multiomics maps from CML patients at diagnosis, retrospectively stratified by BCR::ABL1 IS (%) following 12 months of TKI therapy as per European LeukemiaNet (ELN) recommendations. Simultaneous measurement of global gene expression profiles together with >40 surface markers from the same cells revealed that each patient harbored a unique composition of stem and progenitor cells at diagnosis demonstrating that cellular heterogeneity is a hallmark of CML. The patients with treatment failure after 12 months of therapy had markedly higher abundance of molecularly defined primitive cells at diagnosis compared to the optimal responders. Furthermore, deconvolution of an independent dataset of CML patient-derived bulk transcriptomes (n=59) into constituent cell populations showed that the proportion of primitive cells versus lineage primed sub-populations significantly connected with the TKI-treatment outcome. The multiomic feature landscape enabled visualization of the primitive fraction as a heterogenous mixture of molecularly distinct Lin - CD34 + CD38 -/low BCR::ABL1 + LSCs and BCR::ABL1 - hematopoietic stem cells (HSCs) in variable ratio across patients and guided their prospective isolation by a combination of CD26 and CD35 cell surface markers. We for the first time show that BCR::ABL1 + LSCs and BCR::ABL1 - HSCs can be distinctly separated as CD26 + CD35 - and CD26 - CD35 + respectively. In addition, we found the relative proportion of CD26 - CD35 + HSCs to be higher in optimal responders when compared to treatment failures, at diagnosis as well as following 3 months of TKI therapy, and that the LSC/HSC ratio was increased in patients with prospective treatment failure. Collectively, the patient-specific cellular heterogeneity multiomics maps build a framework towards understanding therapy response and adapting treatment by devising strategies that either extinguish TKI-insensitive LSCs or engage the immune effectors to suppress the residual leukemogenic cells.
0

Single-cell multiomics analysis of chronic myeloid leukemia links cellular heterogeneity to therapy response

Rebecca Warfvinge et al.Nov 6, 2024
The advent of tyrosine kinase inhibitors (TKIs) as treatment of chronic myeloid leukemia (CML) is a paradigm in molecularly targeted cancer therapy. Nonetheless, TKI-insensitive leukemia stem cells (LSCs) persist in most patients even after years of treatment and are imperative for disease progression as well as recurrence during treatment-free remission (TFR). Here, we have generated high-resolution single-cell multiomics maps from CML patients at diagnosis, retrospectively stratified by BCR::ABL1 IS (%) following 12 months of TKI therapy. Simultaneous measurement of global gene expression profiles together with >40 surface markers from the same cells revealed that each patient harbored a unique composition of stem and progenitor cells at diagnosis. The patients with treatment failure after 12 months of therapy had a markedly higher abundance of molecularly defined primitive cells at diagnosis compared to the optimal responders. The multiomic feature landscape enabled visualization of the primitive fraction as a mixture of molecularly distinct BCR::ABL1 + LSCs and BCR::ABL1 - hematopoietic stem cells (HSCs) in variable ratio across patients, and guided their prospective isolation by a combination of CD26 and CD35 cell surface markers. We for the first time show that BCR::ABL1 + LSCs and BCR::ABL1 - HSCs can be distinctly separated as CD26 + CD35 - and CD26 - CD35 + , respectively. In addition, we found the ratio of LSC/HSC to be higher in patients with prospective treatment failure compared to optimal responders, at diagnosis as well as following 3 months of TKI therapy. Collectively, this data builds a framework for understanding therapy response and adapting treatment by devising strategies to extinguish or suppress TKI-insensitive LSCs.