PB
Paul Bensadoun
Author with expertise in Induction and Differentiation of Pluripotent Stem Cells
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
49
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
69

A single short reprogramming early in life improves fitness and increases lifespan in old age

Quentin Alle et al.May 14, 2021
Abstract Forced and maintained expression of four transcription factors OCT4, SOX2, KLF4 and c-MYC (OSKM), can reprogram somatic cells into induced Pluripotent Stem Cells (iPSCs) and a limited OSKM induction is able to rejuvenate the cell physiology without changing the cell identity. We therefore sought to determine if a burst of OSKM might improve tissue fitness and delay age-related pathologies in a whole animal. For this, we used a sensitive model of heterozygous premature aging mice carrying just one mutated Lamin A allele producing progerin. We briefly treated two months-young heterozygotes mice with OSKM and monitored their natural age-related deterioration by various health parameters. Surprisingly, a single two and a half weeks reprogramming was sufficient to improve body composition and functional capacities, over the entire lifespan. Mice treated early in life had improved tissue structures in bone, lung, spleen, kidney and skin, with an increased lifespan of 15%, associated to a differential DNA methylation signature. Altogether, our results indicate that a single short reprogramming early in life might initiate and propagate an epigenetically related rejuvenated cell physiology, to promote a healthy lifespan. One Sentence summary A single short reprogramming early in life rejuvenates cell physiology, improves body composition, tissue fitness and increases lifespan in elderly.
69
Citation12
0
Save
0

Senomorphic activity of a combination of niacinamide and hyaluronic acid: correlation with clinical improvement of skin aging

Patrick Bogdanowicz et al.Jul 15, 2024
Intrinsic and extrinsic factors, including lifestyle and sun exposure, can contribute to cell senescence, which impairs skin homeostasis, that may in turn lead to skin aging. Senescent cells have a specific secretome, called the senescence-associated secretory phenotype (SASP) that includes MMPs, CXCLs and S100A8/9. Reducing the SASP with senotherapeutics is a promising strategy to reduce skin aging. Here we evaluated the effect of a formula containing niacinamide and hyaluronic acid, which are known to limit senescence and skin aging. We conducted three different studies. (1) Ex vivo explants treated with the formula had more collagen and glycosaminoglycan. (2) In a clinical trial with forty-four women, two months of treatment improved fine lines, wrinkles, luminosity, smoothness, homogeneity, and plumpness. (3) In a third study on thirty women, we treated one arm for two months and took skin biopsies to study gene expression. 101 mRNAs and 13 miRNAs were differentially expressed. We observed a likely senomorphic effect, as there was a decrease in many SASP genes including MMP12 and CXCL9 and a significant downregulation of autocrine signaling genes: S100A8 and S100A9. These pharmaco-clinical results are the first to demonstrate the senomorphic properties of an effective anti-aging formula in skin.
0
Citation1
0
Save
3

Maternal vitamin D deficiency impairs heart formation in mouse offspring through a change in 3D-chromatin structure

Eva Seipelt et al.Dec 18, 2020
Abstract The origins of congenital heart diseases, the most common congenital diseases are still largely unknown. Environmental factors are now emerging as major causes of these diseases. Vitamin D deficiency has become a public health burden, notably for childbearing age, pregnant and breastfeeding women. Since maternal 25-hydroxyvitamin D (25(OH)D) determined fetal and neonatal 25(OH)D status, foetuses exposed to insufficient levels of vitamin D, may feature developmental defects. Herein, we investigated the effects of maternal vitamin D deficiency on cardiovascular defects in early and later life of offsprings in two generations as well as the molecular mechanisms underlying vitamin D effect. Eight weeks before and during pregnancy, C57BL/6JRj female mice received a sufficient or vitamin D deficient diet ((1.0 IU/g in control vs 0.0 IU/g in Vitamin D Deficient (VDD) group). E16.5 Embryos of maternal VDD diet featured hypertrophic heart revealed by a thicker left ventricular (LV) wall and septum. RNAseq analysis of LV revealed 1555 transcripts differentially expressed in the VDD group and among them cardiac transcription factors and constitutive cardiac genes ( tbx5, gata4, myl2 ). Anti-Vitamin D receptor (VDR) Chip-seq from chromatin of E16.5 LV uncovered different targeting of tbx5 and tbx3 loci by VDR in the VDD vs control embryos. Anti-CTCF ChIP-loop experiments focusing on the Tbx3 and Tbx5 loci uncovered a change in the Topology Associated Domains associated with these loci. Echocardiography of 2-months-old VDD offspring revealed a significantly thicker left ventricle and increased fractional shortening while 6-months-old mice featured cardiac decompensation and in turn failing LV. Maternal vitamin D deficiency severely affects heart formation following a change in chromatin conformation on cardiac gene loci and impacts function of adult hearts in two generations. These defects are likely to be at the origin of cardiovascular diseases in the adulthood.