SA
Stefan Appelhoff
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(100% Open Access)
Cited by:
413
h-index:
14
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Guidelines for the content and format of PET brain data in publications and archives: A consensus paper

Gitte Knudsen et al.Feb 16, 2020
It is a growing concern that outcomes of neuroimaging studies often cannot be replicated. To counteract this, the magnetic resonance (MR) neuroimaging community has promoted acquisition standards and created data sharing platforms, based on a consensus on how to organize and share MR neuroimaging data. Here, we take a similar approach to positron emission tomography (PET) data. To facilitate comparison of findings across studies, we first recommend publication standards for tracer characteristics, image acquisition, image preprocessing, and outcome estimation for PET neuroimaging data. The co-authors of this paper, representing more than 25 PET centers worldwide, voted to classify information as mandatory, recommended, or optional. Second, we describe a framework to facilitate data archiving and data sharing within and across centers. Because of the high cost of PET neuroimaging studies, sample sizes tend to be small and relatively few sites worldwide have the required multidisciplinary expertise to properly conduct and analyze PET studies. Data sharing will make it easier to combine datasets from different centers to achieve larger sample sizes and stronger statistical power to test hypotheses. The combining of datasets from different centers may be enhanced by adoption of a common set of best practices in data acquisition and analysis.
3

Capturing the nature of events and event context using Hierarchical Event Descriptors (HED)

Kay Robbins et al.May 7, 2021
Abstract Event-related data analysis plays a central role in EEG and MEG (MEEG) and other neuroimaging modalities such as fMRI. Choices about which events to report and how to annotate their full natures significantly influence the value, reliability, and reproducibility of neuroimaging datasets for further analysis and meta- or mega-analysis . A powerful annotation strategy using the new third-generation formulation of the Hierarchical Event Descriptors (HED) framework and tools ( hedtags.org ) combines robust event description with details of experiment design and metadata in a human-readable as well as machine-actionable form, making event annotation relevant to the full range of neuroimaging and other time series data. This paper considers the event design and annotation process using as a case study the well-known multi-subject, multimodal dataset of Wakeman and Henson made available by its authors as a Brain Imaging Data Structure (BIDS) dataset ( bids.neuroimaging.io ). We propose a set of best practices and guidelines for event annotation integrated in a natural way into the BIDS metadata file architecture, examine the impact of event design decisions, and provide a working example of organizing events in MEEG and other neuroimaging data. We demonstrate how annotations using HED can document events occurring during neuroimaging experiments as well as their interrelationships, providing machine-actionable annotation enabling automated within- and across-experiment analysis and comparisons. We discuss the evolution of HED software tools and have made an accompanying HED-annotated BIDS-formatted edition of the MEEG data of the Wakeman and Henson dataset ( openneuro.org, ds003645 ).
11

EEG-representational geometries and psychometric distortions in approximate numerical judgment

Stefan Appelhoff et al.Apr 1, 2022
Abstract When judging the average value of sample stimuli (e.g., numbers) people tend to either over- or underweight extreme sample values, depending on task context. In a context of overweighting, recent work has shown that extreme sample values were overly represented also in neural signals, in terms of an anti-compressed geometry of number samples in multivariate electroencephalography (EEG) patterns. Here, we asked whether neural representational geometries may also reflect underweighting of extreme values (i.e., compression) which has been observed behaviorally in a great variety of tasks. We used a simple experimental manipulation (instructions to average a single-stream or to compare dual-streams of samples) to induce compression or anti-compression in behavior when participants judged rapid number sequences. Model-based representational similarity analysis (RSA) replicated the previous finding of neural anti-compression in the dual-stream task, but failed to provide evidence for neural compression in the single-stream task, despite the evidence for compression in behavior. Instead, the results suggested enhanced neural processing of extreme values in either task, regardless of whether extremes were over- or underweighted in subsequent behavioral choice. We further observed more general differences in the neural representation of the sample information between the two tasks. The results suggest enhanced processing of extreme values as the brain’s default. Such a default raises new questions about the origin of common psychometric distortions, such as diminishing sensitivity for larger values.