RM
Ryan McQuillen
Author with expertise in Bacterial Physiology and Genetics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
441
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
25

FtsN activates septal cell wall synthesis by forming a processive complex with the septum-specific peptidoglycan synthase in E. coli

Zhixin Lyu et al.Aug 24, 2021
Abstract The FtsN protein of Escherichia coli and other proteobacteria is an essential and highly conserved bitopic membrane protein that triggers the inward synthesis of septal peptidoglycan (sPG) during cell division. Previous work has shown that the activation of sPG synthesis by FtsN involves a series of interactions of FtsN with other divisome proteins and the cell wall. Precisely how FtsN achieves this role is unclear, but a recent study has shown that FtsN promotes the relocation of the essential sPG synthase FtsWI from an FtsZ-associated track (where FtsWI is inactive) to an sPG-track (where FtsWI engages in sPG synthesis). Whether FtsN works by displacing FtsWI from the Z-track or capturing/retaining FtsWI on the sPG-track is not known. Here we use single-molecule imaging and genetic manipulation to investigate the organization and dynamics of FtsN at the septum and how they are coupled to sPG synthesis activity. We found that FtsN exhibits a spatial organization and dynamics distinct from those of the FtsZ-ring. Single FtsN molecules move processively as a single population with a speed of ∼ 9 nm s -1 , similar to the speed of active FtsWI molecules on the sPG-track, but significantly different from the ∼ 30 nm s -1 speed of inactive FtsWI molecules on the FtsZ-track. Furthermore, the processive movement of FtsN is independent of FtsZ’s treadmilling dynamics but driven exclusively by active sPG synthesis. Importantly, only the essential domain of FtsN, a three-helix bundle in the periplasm, is required to maintain the processive complex containing both FtsWI and FtsN on the sPG-track. We conclude that FtsN activates sPG synthesis by forming a processive synthesis complex with FtsWI exclusively on the sPG-track. These findings favor a model in which FtsN captures or retains FtsWI on the sPG-track rather than one in which FtsN actively displaces FtsWI from the Z-track.
25
Citation10
0
Save
0

A Pairwise Distance Distribution Correction (DDC) algorithm to eliminate blinking-caused artifacts in super-resolution microscopy

Christopher Bohrer et al.Sep 12, 2019
Abstract In single-molecule localization based super-resolution microscopy (SMLM), a fluorophore stochastically switches between fluorescent- and dark-states, leading to intermittent emission of fluorescence, a phenomenon known as blinking. Intermittent emissions create multiple localizations belonging to the same molecule, resulting in blinking-artifacts within SMLM images. These artifacts are often interpreted as true biological assemblies, confounding quantitative analyses and interpretations. Multiple methods have been developed to eliminate these artifacts, but they either require additional experiments, arbitrary thresholds, or specific photo-kinetic models. Here we present a method, termed Distance Distribution Correction (DDC), to eliminate blinking-caused repeat localizations without any additional calibrations. The approach relies on the finding that the true pairwise distance distribution of different fluorophores in an SMLM image can be naturally obtained from the imaging sequence by using distances between localizations separated by a time much longer than the average fluorescence survival time. We show that using the true pairwise distribution we can define and then maximize the likelihood of obtaining a particular set of localizations void of blinking-artifacts, generating an accurate reconstruction of the underlying cellular structure. Using both simulated and experimental data, we show that DDC surpasses all previous existing blinking-artifact correction methodologies, resulting in drastic improvements in obtaining the closest estimate of the true spatial organization and number of fluorescent emitters in a wide range of applications. The simplicity and robustness of DDC will allow it to become the field standard in SMLM imaging, enabling the most accurate reconstruction and quantification of SMLM images to date.
0

FtsW exhibits distinct processive movements driven by either septal cell wall synthesis or FtsZ treadmilling in E. coli

Xinxing Yang et al.Nov 21, 2019
During bacterial cell division, synthesis of new septal peptidoglycan (sPG) is crucial for successful cytokinesis and cell pole morphogenesis. FtsW, a SEDS (Shape, Elongation, Division and Sporulation) family protein and an indispensable component of the cell division machinery in all walled bacterial species, was recently identified in vitro as a new monofunctional peptidoglycan glycosyltransferases (PGTase). FtsW and its cognate monofunctional transpeptidase (TPase) class b penicillin binding protein (PBP3 or FtsI in E. coli) may constitute the essential, bifunctional sPG synthase specific for new sPG synthesis. Despite its importance, the septal PGTase activity of FtsW has not been documented in vivo. How its activity is spatiotemporally regulated in vivo has also remained unknown. Here we investigated the septal PGTase activity and dynamics of FtsW in E. coli cells using a combination of single-molecule imaging and genetic manipulations. We showed that FtsW exhibited robust activity to incorporate an N-acetylmuramic acid analog at septa in the absence of other known PGTases, confirming FtsW as the essential septum-specific PGTase in vivo. Furthermore, we identified two populations of processively moving FtsW molecules at septa. A fast-moving population is driven by the treadmilling dynamics of FtsZ and independent of sPG synthesis. A slow-moving population is driven by active sPG synthesis and independent of FtsZ treadmilling dynamics. We further identified that FtsN, a potential sPG synthesis activator, plays an important role in promoting the slow-moving, sPG synthesis-dependent population. Our results support a two-track model, in which inactive sPG synthase molecules follow the fast treadmilling 'Z-track' to be distributed along the septum; FtsN promotes their release from the 'Z-track' to become active in sPG synthesis on the slow 'sPG-track'. This model integrates spatial information into the regulation of sPG synthesis activity and could serve as a mechanism for the spatiotemporal coordination of bacterial cell wall constriction.