BK
Brett Knolhoff
Author with expertise in Macrophage Activation and Polarization
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(100% Open Access)
Cited by:
4,003
h-index:
18
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

CSF1/CSF1R Blockade Reprograms Tumor-Infiltrating Macrophages and Improves Response to T-cell Checkpoint Immunotherapy in Pancreatic Cancer Models

Yu Zhu et al.Aug 1, 2014
Abstract Cancer immunotherapy generally offers limited clinical benefit without coordinated strategies to mitigate the immunosuppressive nature of the tumor microenvironment. Critical drivers of immune escape in the tumor microenvironment include tumor-associated macrophages and myeloid-derived suppressor cells, which not only mediate immune suppression, but also promote metastatic dissemination and impart resistance to cytotoxic therapies. Thus, strategies to ablate the effects of these myeloid cell populations may offer great therapeutic potential. In this report, we demonstrate in a mouse model of pancreatic ductal adenocarcinoma (PDAC) that inhibiting signaling by the myeloid growth factor receptor CSF1R can functionally reprogram macrophage responses that enhance antigen presentation and productive antitumor T-cell responses. Investigations of this response revealed that CSF1R blockade also upregulated T-cell checkpoint molecules, including PDL1 and CTLA4, thereby restraining beneficial therapeutic effects. We found that PD1 and CTLA4 antagonists showed limited efficacy as single agents to restrain PDAC growth, but that combining these agents with CSF1R blockade potently elicited tumor regressions, even in larger established tumors. Taken together, our findings provide a rationale to reprogram immunosuppressive myeloid cell populations in the tumor microenvironment under conditions that can significantly empower the therapeutic effects of checkpoint-based immunotherapeutics. Cancer Res; 74(18); 5057–69. ©2014 AACR.
0
Citation1,084
0
Save
0

Targeting Tumor-Infiltrating Macrophages Decreases Tumor-Initiating Cells, Relieves Immunosuppression, and Improves Chemotherapeutic Responses

Jonathan Mitchem et al.Dec 6, 2012
Abstract Tumor-infiltrating immune cells can promote chemoresistance and metastatic spread in aggressive tumors. Consequently, the type and quality of immune responses present in the neoplastic stroma are highly predictive of patient outcome in several cancer types. In addition to host immune responses, intrinsic tumor cell activities that mimic stem cell properties have been linked to chemoresistance, metastatic dissemination, and the induction of immune suppression. Cancer stem cells are far from a static cell population; rather, their presence seems to be controlled by highly dynamic processes that are dependent on cues from the tumor stroma. However, the impact immune responses have on tumor stem cell differentiation or expansion is not well understood. In this study, we show that targeting tumor-infiltrating macrophages (TAM) and inflammatory monocytes by inhibiting either the myeloid cell receptors colony-stimulating factor-1 receptor (CSF1R) or chemokine (C–C motif) receptor 2 (CCR2) decreases the number of tumor-initiating cells (TIC) in pancreatic tumors. Targeting CCR2 or CSF1R improves chemotherapeutic efficacy, inhibits metastasis, and increases antitumor T-cell responses. Tumor-educated macrophages also directly enhanced the tumor-initiating capacity of pancreatic tumor cells by activating the transcription factor STAT3, thereby facilitating macrophage-mediated suppression of CD8+ T lymphocytes. Together, our findings show how targeting TAMs can effectively overcome therapeutic resistance mediated by TICs. Cancer Res; 73(3); 1128–41. ©2012 AACR.
0
Citation840
0
Save
0

Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy

Hong Jiang et al.Jul 4, 2016
DeNardo and colleagues report that inhibiting focal adhesion kinase in pancreatic ductal adenocarcinoma (PDAC) in mice reduces fibrosis and improves the efficacy of tumor immunotherapy. These findings suggest an approach to overcome the immunosuppressive tumor microenvironment of PDAC. Single-agent immunotherapy has achieved limited clinical benefit to date in patients with pancreatic ductal adenocarcinoma (PDAC). This may be a result of the presence of a uniquely immunosuppressive tumor microenvironment (TME). Critical obstacles to immunotherapy in PDAC tumors include a high number of tumor-associated immunosuppressive cells and a uniquely desmoplastic stroma that functions as a barrier to T cell infiltration. We identified hyperactivated focal adhesion kinase (FAK) activity in neoplastic PDAC cells as an important regulator of the fibrotic and immunosuppressive TME. We found that FAK activity was elevated in human PDAC tissues and correlated with high levels of fibrosis and poor CD8+ cytotoxic T cell infiltration. Single-agent FAK inhibition using the selective FAK inhibitor VS-4718 substantially limited tumor progression, resulting in a doubling of survival in the p48-Cre;LSL-KrasG12D;Trp53flox/+ (KPC) mouse model of human PDAC. This delay in tumor progression was associated with markedly reduced tumor fibrosis and decreased numbers of tumor-infiltrating immunosuppressive cells. We also found that FAK inhibition rendered the previously unresponsive KPC mouse model responsive to T cell immunotherapy and PD-1 antagonists. These data suggest that FAK inhibition increases immune surveillance by overcoming the fibrotic and immunosuppressive PDAC TME and renders tumors responsive to immunotherapy.
0
Citation796
0
Save
33

Macrophage proliferation machinery leads to PDAC progression, but susceptibility to innate immunotherapy

Chong Zuo et al.Nov 8, 2021
Abstract Tumor-associated macrophages (TAMs) are involved in many aspects of cancer progression and correlate with poor clinical outcomes in many cancer types, including pancreatic ductal adenocarcinomas (PDACs). Previous studies have shown that TAMs can populate PDAC tumors not only by monocyte recruitment but also by local proliferation. However, the impact local proliferation might have on macrophage phenotype and cancer progression is unknown. Here, we utilized genetically engineered cancer models, single-cell RNA-sequencing data, and in vitro systems to show that proliferation of TAMs was driven by colony stimulating factor-1 (CSF1) produced by cancer-associated fibroblasts. CSF1 induced high levels of p21 in macrophages, which regulated both TAM proliferation and phenotype. TAMs in human and mouse PDACs with high levels of p21 had more inflammatory and immunosuppressive phenotypes. The p21 expression in TAMs was induced by both stromal interaction and/or chemotherapy treatment. Finally, by modeling p21 expression levels in TAMs, we found that p21-driven macrophage immunosuppression in vivo drove tumor progression. Serendipitously, the same p21-driven pathways that drive tumor progression, also drive response to CD40 agonist. These data suggest that stromal or therapy-induced regulation of cell cycle machinery can regulate both macrophage-mediated immune suppression and susceptibility to innate immunotherapy. Summary TAMs are indicative of poor clinical outcomes and in PDAC their number is sustained in part by local proliferation. This study shows that stromal desmoplasia drives local proliferation of TAMs, and induces their immunosuppressive ability through altering cell cycle machinery, including p21 expression. Serendipitously, these changes in p21 in TAMs also potentially render tumors more sensitive to CD40 agonist therapy.
33
Citation3
0
Save
37

Context-dependent triggering of STING-interferon signaling by CD11b agonists supports anti-tumor immunity in mouse models and human cancer patients

Xiuting Liu et al.Mar 23, 2022
Abstract Chronic activation of inflammatory pathways and suppressed interferon signaling are hallmarks of myeloid cells in immunosuppressive tumors that drive poor responsiveness to conventional and immune therapies. Previous studies have identified agonistic activation of the CD11b integrin as a potential strategy to enhance anti-tumor immunity. However, the mechanisms by which CD11b-agonism reprogram tumor immunity are poorly understood, and this may impair patient selection and identification of effective treatment combinations. Herein we used a combination of in vitro systems, animal models, and samples from first in human clinical trials of the CD11b-agonist GB1275 to identify the mechanism of action of this approach and identify combinations for further testing. We found that CD11b agonism altered tumor-associated macrophage (TAM) phenotypes by simultaneously repressing NFκB/IL1-signaling and activating interferon (IFN) gene expression. Repression of NFκB/IL-1 signaling was due to rapid degradation of p65 protein by the proteosome and was not context dependent. In contrast, CD11b agonism triggered mitochondrial dysfunction to stimulate STING-induced, STAT1-mediated interferon signaling. The magnitude of CD11b agonist induction of STING/IFN signaling was dependent on the tumor microenvironment and was significantly amplified by cytotoxic therapies. Using tissues from phase I clinical trials, we demonstrated that GB1275 treatment activated STING and STAT1 signaling in TAMs in human tumors. Together, these mechanisms allowed macrophages to augment anti-tumor T cell immunity. These studies identified potential mechanism-based therapeutic strategies for CD11b agonist use and identified potential patient populations more likely to benefit from them. Statement of significance CD11b agonists are a novel approach to reprogram myeloid cells in solid tumors. We show that GB1275, a CD11b-agonist, amplified STING/IFN signaling in TAMs to support anti-tumor immunity and this signaling is amplified further by cytotoxic therapy. These studies support new treatment strategies for advanced solid tumors with myeloid immunosuppression.
37
Citation1
0
Save